【題目】如圖,兩正方形彼此相鄰且內接于半圓,若小正方形的面積為16cm2 , 則該半圓的半徑為( ).
A. cm
B.9 cm
C. cm
D. cm
【答案】C
【解析】如圖,圓心為A,設大正方形的邊長為2x,圓的半徑為R,
∵正方形有兩個頂點在半圓上,另外兩個頂點在圓心兩側,
∴AE=BC=x,CE=2x;
∵小正方形的面積為16cm2,
∴小正方形的邊長EF=DF=4,
由勾股定理得,R2=AE2+CE2=AF2+DF2,
即x2+4x2=(x+4)2+42,
解得,x=4,
∴R=4 cm,
故答案為:C.
觀察圖形可知正方形有兩個頂點在半圓上,另外兩個頂點在圓心兩側,因此設大正方形的邊長為2x,圓的半徑為R,根據(jù)小正方形的面積可求出EF=DF=4,再根據(jù)R2=AE2+CE2=AF2+DF2,建立關于x的方程,求解即可得出圓的半徑長。
科目:初中數(shù)學 來源: 題型:
【題目】已知多項式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1).
(1)若多項式的值與字母x的取值無關,求a、b的值.
(2)在(1)的條件下,先化簡多項式3(a2﹣ab+b2)﹣(3a2+ab+b2),再求它的值.
(3)在(1)的條件下,求(b+a2)+(2b+a2)+(3b+a2)+…+(9b+a2)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿對角線AC翻折,點B落在點F處,FC交AD于E.
(1)求證:△AFE≌△CDF;
(2)若AB=4,BC=8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了調查八年級學生參加“乒乓”、“籃球”、“足球”、“排球”四項體育活動的人數(shù),學校從八年級隨機抽取了部分學生進行調查,根據(jù)調查結果制作了如下不完整的統(tǒng)計表、統(tǒng)計圖:
請你根據(jù)以上信息解答下列各題:
(1)a= ;b= ;c= ;
(2)在扇形統(tǒng)計圖中,排球所對應的圓心角是 度;
(3)若該校八年級共有600名學生,試估計該校八年級喜歡足球的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6,BC=8.
(1)用直尺和圓規(guī)作∠A的平分線,交BC于點D;(要求:不寫作法,保留作圖痕跡)
(2)SADC:SADB .(直接寫出結果)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,
(1)當∠BOC=30°,∠DOE=_______________; 當∠BOC=60°,∠DOE=_______________;
(2)通過上面的計算,猜想∠DOE的度數(shù)與∠AOB有什么關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點坐標為(-2,0),則下列說法:①y隨x的增大而減;②關于x的方程kx+b=0的解為x=-2;③kx+b>0的解集是x>-2;④b<0.其中正確的有__________.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 與 軸交于點 (點 分別在 軸的左右兩側)兩點,與 軸的正半軸交于點 ,頂點為 ,已知點 .
(1)求點 的坐標;
(2)判斷△ 的形狀,并說明理由;
(3)將△ 沿 軸向右平移 個單位( )得到△ .△ 與△ 重疊部分(如圖中陰影)面積為 ,求 與 的函數(shù)關系式,并寫出自變量 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:為了測量某棵樹的高度,小剛用長為2m的竹竿做測量工具,移動竹竿,使竹竿、樹的頂端的影子恰好落在地面的同一點,此時,竹竿與這一點距離6m,與樹相距15m,那么這棵的高度為( )
A.5米
B.7米
C.7.5米
D.21米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com