【題目】如圖,在一筆直的沿湖道路l上有A、B兩個游船碼頭,觀光島嶼C在碼頭 A北偏東60°的方向,在碼頭 B北偏西45°的方向,AC=4km.游客小張準備從觀光島嶼C乘船沿CA回到碼頭A或沿CB回到碼頭B,設開往碼頭A、B的游船速度分別為v1、v2 , 若回到 A、B所用時間相等,則 =(結果保留根號).

【答案】
【解析】解:作CD⊥AB于點B.

∵在Rt△ACD中,∠CAD=90°﹣60°=30°,
∴CD=ACsin∠CAD=4× =2(km),
∵Rt△BCD中,∠CBD=90°,
∴BC= CD=2 (km),
= = =
故答案是:
根據(jù)解直角三角形中正弦的定義求出CD=ACsin∠CAD的值,由勾股定理求出BC的值,求出比值即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,點 E 在正方形 ABCD AB 邊上(不與點 A,B 重合),BD 是對角線,延長 AB 到點 F,使 BFAE,過點 E BD 的垂線,垂足為 M,連接 AM,CF

1)求證:MBME;

2)①用等式表示線段 AM CF 的數(shù)量關系,并證明;

②用等式表示線段 AM,BM,DM 之間的數(shù)量關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,P是對角線AC上的一點,點E在BC的延長線上,且PE=PB.

(1)求證:BCP≌△DCP;

(2)求證:DPE=ABC;

(3)把正方形ABCD改為菱形,其它條件不變(如圖),若ABC=58°,則DPE=   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:射線PO與⊙O交于A、B兩點,PC、PD分別切⊙O于點C、D.

(1)請寫出兩個不同類型的正確結論;
(2)若CD=12,tan∠CPO= ,求PO的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)學實習小組在高300米的山腰(即PH=300米)P處進行測量,測得對面山坡上A處的俯角為30°,對面山腳B處的俯角60°,已知tan∠ABC= ,點P,H,B,C,A在同一個平面上,點H,B,C在同一條直線上,且PH⊥BC,則A,B兩點間的距離為( )米.

A.200
B.200
C.100
D.100

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下列填空.

如圖,已知∠B+BCD=180°,∠B=D.求證:∠E=DFE.

證明:∵∠B+BCD=180°(已知),

ABCD .

∴∠B=DCE .

又∵∠B=D(已知 ,

___________ ( 等量代換 ).

ADBE(內錯角相等,兩直線平行)

∴∠E=DFE .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A、B兩地相距10千米,上午9:00甲騎電動車從A地出發(fā)到B地,9:10乙開車從B地出發(fā)到A地,甲、乙兩人距A 地距離y(千米)與甲所用的時間x(分)之間的關系如圖所示。

(1)甲的速度是 千米/分。

(2)乙的速度是 千米/分,乙到達A地的時間是 。

(3)甲、乙兩人相距4千米的時間是 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,有若干個橫縱坐標分別為整數(shù)的點,其順序按圖中“→”方向排列,如(1,02,02,11,1122,2,,根據(jù)這個規(guī)律,第2019個點的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一個運輸隊承包了一家公司運送貨物的業(yè)務,第一次運送18噸,派了1輛大卡車和5輛小卡車;第二次運送38噸,派了2輛大卡車和11輛小卡車,并且兩次派的車都剛好裝滿。

(1)兩種車型的載重量各是多少噸?

(2)若大卡車運送一次的費用為200元,小卡車運送一次的費用為60元,在第一次運送過程中怎樣安排大小車輛,才能使費用最少?(直接寫出派車方案)

查看答案和解析>>

同步練習冊答案