已知:△ABD和△CBD關(guān)于直線BD對(duì)稱(點(diǎn)A的對(duì)稱點(diǎn)是點(diǎn)C),點(diǎn)E、F分別是線段BC和線段BD上的點(diǎn),且點(diǎn)F在線段EC的垂直平分線上,連接AF、AE,AE交BD于點(diǎn)G.
(1)如圖l,求證:∠EAF=∠ABD;
(2)如圖2,當(dāng)AB=AD時(shí),M是線段AG上一點(diǎn),連接BM、ED、MF,MF的延長(zhǎng)線交ED于點(diǎn)N,∠MBF=∠BAF,AF=AD,請(qǐng)你判斷線段FM和FN之間的數(shù)量關(guān)系,并證明你的判斷是正確的.
(1)證明見(jiàn)解析;(2)FM=FN ,證明見(jiàn)解析.

試題分析:(1)連接FE、FC,先證△ABF、△CBF全等,得∠FEC=∠BAF,通過(guò)四邊形ABEF與三角形AEF內(nèi)角和導(dǎo)出.
(2)先由△AFG∽△BFA,推出∠AGF=∠BAF,再得BG=MG,通過(guò)△AGF∽△DGA,導(dǎo)出GD=a. FD=a,過(guò)點(diǎn)F作FQ∥ED交AE于Q,通過(guò)BE∥AD得線段成比例,設(shè)EG=2k,BG=MG=3k,GQ=EG=,MQ=3k+=,,從而FM=FN.
(1)如圖,連接FE、FC,
∵點(diǎn)F在線段EC的垂直平分線上,∴FE="FC." ∴∠l=∠2.
∵△ABD和△CBD關(guān)于直線BD對(duì)稱,∴AB=CB,∠4=∠3, BF=BF.
∴△ABF≌△CBF(SAS). ∴∠BAF=∠2,F(xiàn)A=FC.
∴FE=FA,∠1=∠BAF. ∴∠5=∠6 .
∵∠l+∠BEF=1800,∴∠BAF+∠BEF=1800.
∵∠BAF+∠BEF+∠AFE+∠ABE=3600,∴∠AFE+∠ABE=1800.
又∵∠AFE+∠5+∠6=1800,∴∠5+∠6=∠3+∠4.
∴∠5=∠4,即∠EAF=∠ABD.

(2)FM=FN ,證明如下:
如圖,由(1)可知∠EAF=∠ABD,
又∵∠AFB=∠GFA,∴△AFG∽△BFA. ∴∠AGF=∠BAF。
又∵∠MBF=∠BAF.∠MBF=∠AGF,∠AGF=∠MBG+∠BMG,∴∠MBG=∠BMG.∴BG=MG.
∵AB=AD,∴∠ADB=∠ABD=∠EAF.
∵∠FGA=∠AGD,∴△AGF∽△DGA. ∴.
∵AF=AD,∴.
設(shè)GF="2a" ,AG=3a,則GD=a. ∴FD=a.
∵∠CBD=∠ABD, ∠ABD=∠ADB,∴∠CBD=∠ADB. ∴BE∥AD.
. ∴.
設(shè)EG=2k,∴BG=MG=3k.
過(guò)點(diǎn)F作FQ∥ED交AE于Q,
.∴.
∴GQ=EG=,MQ=3k+=. ∴.
∵FQ∥ED,∴. ∴FM=FN.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下圖是上海大眾汽車的標(biāo)志圖案,圖中與它相似的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

△ABC與△DEF的相似比為5:2,則△ABC與△DEF的周長(zhǎng)的比為(    )
A.5:2B.2:5C.4:2D.25:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若兩個(gè)等邊三角形的邊長(zhǎng)分別為a與3a,則它們的面積之比為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,且相似比為,若邊上的中線,則邊上的中線=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB∥DC,DE=2AE,CF=2BF,且DC=5,AB=8,則EF=      

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在直角坐標(biāo)系中,已知點(diǎn)A(-2,0)、B(0,4)、C(0,3),過(guò)點(diǎn)C作直線交x軸于點(diǎn)D,使得以D、O、C為頂點(diǎn)的三角形與△AOB相似,這樣的直線最多可以作(   )
A.2條       B.3條           C.4條              D.6條

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知矩形ABCD中,AB=1,在BC上取一點(diǎn)E,沿AE將△ABE向上折疊,使B點(diǎn)落在AD上的F點(diǎn),若四邊形EFDC與矩形ABCD相似,則AD=( 。
A.B.
C.D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則的值是( )
A.B.C.-D.-

查看答案和解析>>

同步練習(xí)冊(cè)答案