【題目】已知拋物線的表達式是y=ax2+(1﹣a)x+1﹣2a(a為不等于0的常數(shù)),上述拋物線無論a為何值始終經(jīng)過定點A和定點B;A為x軸上的點,B為第一象限內(nèi)的點.
(1)請寫出A,B兩點的坐標:A( ,0);B( , );
(2)如圖1,當拋物線與x軸只有一個公共點時,求a的值;
(3)如圖2,當a<0時,若上述拋物線頂點是D,與x軸的另一交點為點C,且點A,B,C,D中沒有兩個點相互重合.
求:①△ABC能否是直角三角形,為什么?
②若使得△ABD是直角三角形,請你求出a的值.(求出1個a的值即可)
【答案】(1)﹣1,2,3;(2)a=;(3)①a=﹣;②a=﹣1.
【解析】
(1)y=ax2+(1-a)x+1-2a=a(x2-x-2)+x+1,當(x2-x-2)=0時,無論a為何值始終經(jīng)過定點A和定點B,即可求解;
(2)當拋物線與x軸只有一個公共點時,△=0,即可求解;
(3)①A(-1,0),設(shè)C(x,0),AB所在的直線的k1值為1,BC所在的直線的k2值為:=3a,當k1k2=-1即可求解;②設(shè):∠ABD=90°,設(shè):D(m,n),而,韋達定理得:m2=-,則m=-,由y=ax2+(1-a)x+1-2a知,m=,即:-=,即可求解.
解:(1)y=ax2+(1﹣a)x+1﹣2a=a(x2﹣x﹣2)+x+1,
當(x2﹣x﹣2)=0時,無論a為何值始終經(jīng)過定點A和定點B,
則x=﹣1或2,則A(﹣1,0)、B(2,3);
故:答案是﹣1,2,3;
(2)當拋物線與x軸只有一個公共點時,△=0,
即:(1﹣a)2﹣2a(1﹣2a)=0,解得:a=;
(3)①A(﹣1,0),設(shè)C(x,0),
由韋達定理:﹣1x=,則C(,0),
AB所在的直線的k1值為1,
BC所在的直線的k2值為: =3a,
當k1k2=﹣1時,AB⊥BC,解得:a=﹣;
②設(shè):∠ABD=90°,
則直線BD所在直線方程的k=﹣1,其直線方程為:y=﹣x+5,
將直線BD所在的方程與二次函數(shù)聯(lián)立得:
ax2+(2﹣a)x﹣(4+2a)=0,
設(shè):D(m,n),而B(2,3)
由韋達定理得:m2=﹣,則m=﹣,
由y=ax2+(1﹣a)x+1﹣2a知,m=,
即:﹣=,
解得:a=﹣1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8.在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),已知點的坐標是,點的坐標是,
(1)圖中點的坐標是________.
(2)點關(guān)于軸對稱的點的坐標是______,并作出四邊形.
(3)求四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線L:y=x2+bx﹣2與x軸相交于A、B兩點(點A在點B的左側(cè)),并與y軸相交于點C.且點A的坐標是(﹣1,0).
(1)求該拋物線的函數(shù)表達式及頂點D的坐標;
(2)判斷△ABC的形狀,并求出△ABC的面積;
(3)將拋物線向左或向右平移,得到拋物線L′,L′與x軸相交于A'、B′兩點(點A′在點B′的左側(cè)),并與y軸相交于點C′,要使△A'B′C′和△ABC的面積相等,求所有滿足條件的拋物線的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(5,0)兩點,直線y=﹣x+3與y軸交于點C,與x軸交于點D.點P是直線CD上方的拋物線上一動點,過點P作PF⊥x軸于點F,交直線CD于點E,設(shè)點P的橫坐標為m.
(1)求拋物線的解析式;
(2)求PE的長最大時m的值.
(3)Q是平面直角坐標系內(nèi)一點,在(2)的情況下,以PQCD為頂點的四邊形是平行四邊形是否存在?若存在,直接寫出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD是正方形,△ADF旋轉(zhuǎn)一定角度后得到△ABE,如圖所示,如果AF=5,AB=9,求:
(1)指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角度;
(2)求DE的長度;
(3)BE與DF的位置關(guān)系如何?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=7,AC=6,∠A=45°,點D、E分別在邊AB、BC上,將△BDE沿著DE所在直線翻折,點B落在點P處,PD、PE分別交邊AC于點M、N,如果AD=2,PD⊥AB,垂足為點D,那么MN的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2 m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關(guān)系式y=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9 m,高度為2.43 m,球場的邊界距O點的水平距離為18 m.
(1)當h=2.6時,求y與x的關(guān)系式(不要求寫出自變量x的取值范圍)
(2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com