【題目】如圖,在中,,對角線、相交于點,將直線繞點順時針旋轉(zhuǎn)一個角度(),分別交線段、于點、,已知,,連接.
(1)如圖①,在旋轉(zhuǎn)的過程中,請寫出線段與的數(shù)量關(guān)系,并證明;
(2)如圖②,當(dāng)時,請寫出線段與的數(shù)量關(guān)系,并證明;
(3)如圖③,當(dāng)時,求的面積.
【答案】(1),理由見解析;(2),理由見解析;(3)
【解析】
(1)根據(jù)平行四邊形的性質(zhì),得,,從而得,進(jìn)而證明,即可得到結(jié)論;
(2)由勾股定理得:,結(jié)合平行四邊形的性質(zhì),可得,進(jìn)而可得,根據(jù)中垂線的性質(zhì),即可得到結(jié)論;
(3)先證四邊形是平行四邊形,根據(jù),,得,進(jìn)而根據(jù)三角形面積公式,即可求解.
(1),理由如下:
∵四邊形是平行四邊形,
∴,,
∴,
在與中,
∵,
∴,
∴;
(2),理由如下:
∵,,,
∴,
∵四邊形是平行四邊形,
∴,,
∴,
又∵,
∴,
∵,即:,
∴,
∴,
∵,
∴;
(3)∵,
∴,
∴,
∴,
∵四邊形是平行四邊形,
∴,
∴四邊形是平行四邊形,
∴,
∵,
∴,
∵由(2)知:,
∵,,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下列4個三角形中,均有AB=AC,則經(jīng)過三角形的一個頂點的一條直線能夠?qū)⑦@個三角形分成兩個小等腰三角形的是( 。
A. ①③B. ①②④C. ①③④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,為對角線上一點,且,過作,分別交、于、。動點從點出發(fā),以每秒1個單位長的速度在射線上運動。動點從點出發(fā),以每秒1個單位長的速度在線段上沿方向運動。以為邊作等邊。已知、兩點同時出發(fā),當(dāng)點返回點時兩點同時停止運動。運動時間為秒.
(1)求線段,當(dāng)點落在線段上時等于多少;
(2)設(shè)運動過程中與矩形的重疊部分面積為,請直接寫出與的函數(shù)關(guān)系式及自變量的取值范圍;
(3)將四邊形繞點旋轉(zhuǎn)一周,在此過程中,設(shè)直線分別與直線、交于點、,當(dāng)是以為底角的等腰三角形時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為( 。
A. 10 B. 9 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,小明同學(xué)作出兩條角平分線,得到交點,就指出若連接,則平分,你覺得有道理嗎?為什么?
(2)如圖②,中,,,,的角平分線上有一點,設(shè)點到邊的距離為.(為正實數(shù))
小季、小何同學(xué)經(jīng)過探究,有以下發(fā)現(xiàn):
小季發(fā)現(xiàn):的最大值為.
小何發(fā)現(xiàn):當(dāng)時,連接,則平分.
請分別判斷小季、小何的發(fā)現(xiàn)是否正確?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在中,,,.點從點開始沿邊向點以的速度移動,同時點從點開始沿邊向點以的速度移動.當(dāng)一個點到達(dá)終點時另一點也隨之停止運動,設(shè)運動時間為秒,
求幾秒后,的面積等于?
求幾秒后,的長度等于?
運動過程中,的面積能否等于?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過上一點E作EG∥AC交CD的延長線于點G,連結(jié)AE交CD于點F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長AB交GE的延長線于點M,若tanG=,AH=,求EM的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com