【題目】A,B兩地間僅有一長為180千米的平直公路,若甲,乙兩車分別從A,B兩地同時出發(fā)勻速前往B,A兩地,乙車速度是甲車速度的倍,乙車比甲車早到45分鐘.
(1)求甲車速度;
(2)乙車到達A地停留半小時后以來A地時的速度勻速返回B地,甲車到達B地后立即提速勻速返回A地,若乙車返回到B地時甲車距A地不多于30千米,求甲車至少提速多少千米/時?
【答案】(1)甲車速度為60千米/時;(2)甲車至少提速15千米/時
【解析】試題分析:(1)根據(jù)路程=速度×?xí)r間,可由乙車比甲車早到45分鐘的關(guān)系列出方程求解即可;
(2)根據(jù)題意可表示出乙返回到B的時間為,甲提速前的時間是,甲提速后的時間為(-),從而根據(jù)“若乙車返回到B地時甲車距A地不多于30千米”,列不等式求解即可.
試題解析:(1)設(shè)甲車速度為x千米/時,則乙車的速度是x千米/時,
依題意得: =+,
解得:x=60.
經(jīng)檢驗:x=60是原方程的解.
答:設(shè)甲車速度為60千米/時;
(2)設(shè)甲車提速y千米/時,
依題意得:180﹣(×2+)(60+y)≤30,
解得:y≥15.
所以甲車至少提速15千米/時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要在一塊三角形空地上種植花草,如圖所示,AC=13 米、AB=14 米、BC=15 米, 若線段 CD 是一條引水渠,且點 D 在邊 AB 上.已知水渠的造價每米 150 元.問:點 D 與點 C 距離多遠時,水渠的造價最低?最低造價是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=BC,點O在AB上,經(jīng)過點A的⊙O與BC相切于點D,交AB于點E.
(1)求證:AD平分∠BAC;
(2)若CD=1,求圖中陰影部分的面積(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD,AD=4,AB=3,如果點E在邊BC上,將紙片沿AE折疊,使點B落在點F處,聯(lián)結(jié)FC,當(dāng)△EFC是直角三角形時,那么BE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線AB∥CD,直線EF與AB,CD分別相交于點E,F.
(1)如圖1,若∠1=60°,求∠2=__________;∠3=__________.
(2)若點P是平面內(nèi)的一個動點,連結(jié)PE,PF,探索∠EPF,∠PEB,∠PFD三個角之間的關(guān)系.
①當(dāng)點P在圖2的位置時,可得∠EPF=∠PEB+∠PFD. 理由如下:
如圖2,過點P作MN∥AB,則∠EPM=∠PEB(__________)
∵AB∥CD(已知) MN∥AB(作圖)
∴MN∥CD(__________)
∴∠MPF=∠PFD (__________)
∴__________+__________=∠PEB+∠PFD(等式的性質(zhì))
即:∠EPF=∠PEB+∠PFD.請補充完整說理過程(填寫理由或數(shù)學(xué)式)
②當(dāng)點P在圖3的位置時,此時∠EPF=80°,∠PEB=156°,則∠PFD=__________;
③當(dāng)點P在圖4的位置時,寫出∠EPF,∠PEB,∠PFD三個角之間的關(guān)系并證明(每一步必須注明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣教育局為了豐富初中學(xué)生的大課間活動,要求各學(xué)校開展形式多樣的陽光體育活動.某中學(xué)就“學(xué)生體育活動興趣愛好”的問題,隨機調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調(diào)查中,喜歡籃球項目的同學(xué)有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學(xué)校有800名學(xué)生,估計全校學(xué)生中有 人喜歡籃球項目.
(2)請將條形統(tǒng)計圖補充完整.
(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機抽取2名同學(xué)代表班級參加;@球隊,請直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).
(1)求證:DE=DF;
(2)若∠A=60°,BE=1,求△ABC的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O 為坐標(biāo)原點,P是反比例函數(shù)圖象上任意一點,以P為圓心,PO為半徑的圓與x軸交于點 A、與y軸交于點B,連接AB.
(1)求證:P為線段AB的中點;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學(xué)習(xí)小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路,完成解答過程.
(1)作AD⊥BC于D,設(shè)BD=x,用含x的代數(shù)式表示CD,則CD=________;
(2)請根據(jù)勾股定理,利用AD作為“橋梁”建立方程,并求出x的值;
(3)利用勾股定理求出AD的長,再計算三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com