【題目】若關(guān)于x的二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))與x軸交于兩個(gè)不同的點(diǎn)A(x1,0),B(x2,0)與y軸交于點(diǎn)C,其圖象的頂點(diǎn)為點(diǎn)M,O是坐標(biāo)原點(diǎn).
(1)若A(﹣2,0),B(4,0),C(0,3)求此二次函數(shù)的解析式并寫出二次函數(shù)的對(duì)稱軸;
(2)如圖,若a>0,b>0,△ABC為直角三角形,△ABM是以AB=2的等邊三角形,試確定a,b,c的值;
(3)設(shè)m,n為正整數(shù),且m≠2,a=1,t為任意常數(shù),令b=3﹣mt,c=﹣3mt,如果對(duì)于一切實(shí)數(shù)t,AB≥|2t+n|始終成立,求m、n的值.
【答案】(1)y=﹣x2+x+3 (2),, (3)m=3,n=2或m=6,n=1
【解析】
(1)先求出a,再代入y=a(x+2)(x﹣4)=a(x2﹣2x﹣8)可得;(2)根據(jù)等腰三角形性質(zhì),先求出點(diǎn)A、B、C的坐標(biāo)分別為(﹣,0)、(,0),(0,﹣),得函數(shù)的表達(dá)式為:y=a(x+)(x﹣)=a(x2+x﹣),即﹣a=﹣,求出a可得;(3)由y=ax2+bx+c=x2+(3﹣mt)x﹣3mt,得x1+x2=mt﹣3,x1x2=﹣3mt,AB=x2﹣x1=|mt+3|≥|2t+n|,則m2t2+6mt+9≥4t2+4tn+n2,即:(m2﹣4)t2+(6m﹣4n)t+(9﹣n2)≥0,由題意得:m2﹣4>0,△=(6m﹣4n)2﹣4(m2﹣4)(9﹣n2)≤0,解得:mn=6,再分析出正整數(shù)解.
解:(1)函數(shù)的表達(dá)式為:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),
則﹣8a=3,解得:a=﹣,
故拋物線的表達(dá)式為:y=﹣x2+x+3;
(2)如圖所示,△ABC為直角三角形,則∠ACB=90°,
∵△AMB是等邊三角形,則點(diǎn)C是MB的中點(diǎn),
則
OA=2﹣=,
則點(diǎn)A、B、C的坐標(biāo)分別為(﹣,0)、(,0),(0,﹣),
則函數(shù)的表達(dá)式為:y=a(x+)(x﹣)=a(x2+x﹣),
即﹣a=﹣,解得:a=,
則函數(shù)表達(dá)式為:y=x2+x﹣;
(3)y=ax2+bx+c=x2+(3﹣mt)x﹣3mt,
則x1+x2=mt﹣3,x1x2=﹣3mt,
AB=x2﹣x1==|mt+3|≥|2t+n|,
則m2t2+6mt+9≥4t2+4tn+n2,
即:(m2﹣4)t2+(6m﹣4n)t+(9﹣n2)≥0,
由題意得:m2﹣4>0,△=(6m﹣4n)2﹣4(m2﹣4)(9﹣n2)≤0,
解得:mn=6,
故:m=3,n=2或m=6,n=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,∠B的角平分線BE與AD交于點(diǎn)E,∠BED的角平分線EF與DC交于點(diǎn)F,若AB=9,DF=2FC,則BC=____.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx-4(k≠0)的圖象與y軸交于點(diǎn)A,與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)B(6,b).
(1)b=__________;k=__________.
(2)點(diǎn)C是直線AB上的動(dòng)點(diǎn)(與點(diǎn)A,B不重合),過點(diǎn)C且平行于y軸的直線l交這個(gè)反比例函數(shù)的圖象于點(diǎn)D,當(dāng)點(diǎn)C的橫坐標(biāo)為3時(shí),得△OCD,現(xiàn)將△OCD沿射線AB方向平移一定的距離(如圖),得到△O′C′D′,若點(diǎn)O的對(duì)應(yīng)點(diǎn)O′落在該反比例函數(shù)圖象上,求點(diǎn)O′,D′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點(diǎn)C、D,若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)是重慶中國三峽博物館,又名重慶博物館,中央地方共建國家級(jí)博物館圖(2)是側(cè)面示意圖.某校數(shù)學(xué)興趣小組的同學(xué)要測(cè)量三峽博物館的高GE.如(2),小杰身高為1.6米,小杰在A處測(cè)得博物館樓頂G點(diǎn)的仰角為27°,前進(jìn)12米到達(dá)B處測(cè)得博物館樓頂G點(diǎn)的仰角為39°,斜坡BD的坡i=1:2.4,BD長(zhǎng)度是13米,GE⊥DE,A、B、D、E、G在同一平面內(nèi),則博物館高度GE約為_____米.(結(jié)果精確到1米,參考數(shù)據(jù)tan27°≈0.50,tan39°≈0.80)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的邊AB為直徑作⊙O,且頂點(diǎn)C在⊙O上,過點(diǎn)B的切線與AC的延長(zhǎng)線交于點(diǎn)D,E是BD中點(diǎn),連接CE.
(1)求證:CE是⊙O的切線;
(2)若AC=8,BC=6,求BD和CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了豐富校園文化生活,提高學(xué)生的綜合素質(zhì),促進(jìn)中學(xué)生全面發(fā)展,學(xué)校開展了多種社團(tuán)活動(dòng).小明喜歡的社團(tuán)有:合唱社團(tuán)、足球社團(tuán)、書法社團(tuán)、科技社團(tuán)(分別用字母A,B,C,D依次表示這四個(gè)社團(tuán)),并把這四個(gè)字母分別寫在四張完全相同的不透明的卡片的正面上,然后將這四張卡片背面朝上洗勻后放在桌面上.
(1)小明從中隨機(jī)抽取一張卡片是足球社團(tuán)B的概率是 .
(2)小明先從中隨機(jī)抽取一張卡片,記錄下卡片上的字母后不放回,再從剩余的卡片中隨機(jī)抽取一張卡片,記錄下卡片上的字母.請(qǐng)你用列表法或畫樹狀圖法求出小明兩次抽取的卡片中有一張是科技社團(tuán)D的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù)y=2x和y=﹣x的圖象分別為直線l1,l2,過點(diǎn)(1,0)作x軸的垂線交l1于點(diǎn)A1,過點(diǎn)A1作y軸的垂線交l2于點(diǎn)A2,過點(diǎn)A2作x軸的垂線交l1于點(diǎn)A3,過點(diǎn)A3作y軸的垂線交l2于點(diǎn)A4,…,依次進(jìn)行下去,則點(diǎn)A2019的坐標(biāo)為( 。
A.(21009,21010)B.(﹣21009,21010)
C.(21009,﹣21010)D.(﹣21009,﹣21010)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半圓的半徑OC=2,線段BC與CD是半圓的兩條弦,BC=CD,延長(zhǎng)CD交直徑BA的延長(zhǎng)線于點(diǎn)E,若AE=2,則弦BD的長(zhǎng)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com