【題目】如圖,已知點C與某建筑物底端B相距306米(點C與點B在同一水平面上),某同學(xué)從點C出發(fā),沿同一剖面的斜坡CD行走195米至坡頂D處,斜坡CD的坡度(或坡比)i=1:2.4,在D處測得該建筑物頂端A的俯視角為20°,則建筑物AB的高度約為(精確到0.1米,參考數(shù)據(jù):sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)( 。

A. 29.1 B. 31.9 C. 45.9 D. 95.9

【答案】A

【解析】試題作DE⊥ABE點,作AF⊥DEF點,如圖,設(shè)DE=xmCE=2.4xm,由勾股定理,得

x2+2.4x2=1952,解得x≈75m,DE=75m,CE=2.4x=180mEB=BC﹣CE=306﹣180=126m

∵AF∥DG,∴∠1=∠ADG=20°,tan∠1=tan∠ADG==0.364

AF=EB=126mtan∠1==0.364,DF=0.364AF=0.364×126=45.9AB=FE=DE﹣DF=75﹣45.9≈29.1m,故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=(k≠0)的圖象過點A(-3,2).

(1)求這個反比例函數(shù)的解析式;

(2)B(x1,y1),C(x2,y2),D(x3,y3)是這個反比例函數(shù)圖象上的三個點,若x1>x2>0>x3,請比較y1,y2,y3的大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的頂點,與正方形的頂點同在一段拋物線上,且拋物線的頂點同時落在軸上,正方形邊同時落在軸上,若正方形的邊長為,則正方形的邊長為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實驗中學(xué)本學(xué)期組織開展課外興趣活動,各活動小班根據(jù)實際情況確定了計劃組班人數(shù),并發(fā)動學(xué)生自愿報名,報名人數(shù)與計劃人數(shù)的前5位情況如下:

小班名稱

奧數(shù)

寫作

舞蹈

籃球

航模

報名人數(shù)

215

201

154

76

65

小班名稱

奧數(shù)

舞蹈

寫作

合唱

書法

計劃人數(shù)

120

100

90

80

70

若用同一小班的報名人數(shù)與計劃人數(shù)的比值大小來衡量進入該班的難易程度,則由表中數(shù)據(jù),可預(yù)測( )

A. 奧數(shù)比書法容易 B. 合唱比籃球容易 C. 寫作比舞蹈容易 D. 航模比書法容易

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與反比例函數(shù)的圖像在第一象限有一個公共點,其橫坐標(biāo)為1,則一次函數(shù)的圖像可能是( )

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017安徽省)如圖,游客在點A處做纜車出發(fā),沿ABD的路線可至山頂D處,假設(shè)ABBD都是直線段,且AB=BD=600m,α=75°,β=45°,求DE的長.

(參考數(shù)據(jù):sin75°≈0.97,cos75°≈0.26,≈1.41)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組同學(xué)進行測量大樹CD高度的綜合實踐活動,如圖,在點A處測得直立于地面的大樹頂端C的仰角為36°,然后沿在同一剖面的斜坡AB行走13米至坡頂B處,然后再沿水平方向行走6米至大樹腳底點D處,斜面AB的坡度(或坡比)i=1:2.4,那么大樹CD的高度約為( )(參考數(shù)據(jù):sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)

A. 8.1 B. 17.2 C. 19.7 D. 25.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,五邊形是邊長為的正五邊形,是正五邊形的外接圓,過點的切線,與、的延長線交分別于點,延長、相交于點,那么的長度是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC中的∠A與∠B滿足(1-tanA)2=0.

(1)試判斷ABC的形狀;

(2)(1+sinA)2-2-(3+tanC)0的值.

查看答案和解析>>

同步練習(xí)冊答案