【題目】如圖,在直角坐標系中,直線y1=2x﹣2與坐標軸交于A、B兩點,與雙曲線y2= (x>0)交于點C,過點C作CD⊥x軸,且OA=AD,則以下結(jié)論: ①當x>0時,y1隨x的增大而增大,y2隨x的增大而減;
②k=4;
③當0<x<2時,y1<y2;
④如圖,當x=4時,EF=4.
其中正確結(jié)論的個數(shù)是( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:對于直線y1=2x﹣2, 令x=0,得到y(tǒng)=2;令y=0,得到x=1,
∴A(1,0),B(0,﹣2),即OA=1,OB=2,
在△OBA和△CDA中, ,
∴△OBA≌△CDA(AAS),
∴CD=OB=2,OA=AD=1,
∴C(2,2),
當x>0時,y1隨x的增大而增大,y2隨x的增大而減;故①正確;
把C坐標代入反比例解析式得:k=4,故②正確;
由函數(shù)圖象得:當0<x<2時,y1<y2 , 選項③正確;
當x=4時,y1=6,y2=1,即EF=6﹣1=5,選項④錯誤;
故選C
對于直線解析式,分別令x與y為0求出y與x的值,確定出A與B坐標,利用AAS得到三角形OBA與三角形CDA全等,利用全等三角形對應(yīng)邊相等得到CD=OB,確定出C坐標,代入反比例解析式求出k的值,確定出反比例解析式,由圖象判斷y1<y2時x的范圍,以及y1與y2的增減性,把x=2分別代入直線與反比例解析式,相減求出EF的長,即可做出判斷.
科目:初中數(shù)學 來源: 題型:
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,,點P從點D出發(fā)向點A運動,運動到點A即停止;同時,點Q從點B出發(fā)向點C運動,運動到點C即停止,點P、Q的速度都是,連接PQ、AQ、設(shè)點P、Q運動的時間為ts.
當t為何值時,四邊形ABQP是矩形;
當t為何值時,四邊形AQCP是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知線段AB=12cm,點C為線段AB上的一動點,點D,E分別是AC和BC中點.
(1)若點C恰好是AB的中點,則DE=_______cm;
(2)若AC=4cm,求DE的長;
(3)試說明無論AC取何值(不超過12cm),DE的長不變;
(4)如圖②,已知∠AOB=120°,過角的內(nèi)部任一點C畫射線OC.若OD,OE分別平分∠AOC和∠BOC.試說明∠DOE的度數(shù)與射線OC的位置無關(guān).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,海中一小島有一個觀測點A,某天上午觀測到某漁船在觀測點A的西南方向上的B處跟蹤魚群由南向北勻速航行.B處距離觀測點30 海里,若該漁船的速度為每小時30海里,問該漁船多長時間到達觀測點A的北偏西60°方向上的C處?(計算結(jié)果用根號表示,不取近似值)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形.
(2)若∠ADF:∠FDC=3:2,DF⊥AC,則∠BDF的度數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB是平角,∠DOE=90°,OC平分∠DOB.
(1)若∠AOE=32°,求∠BOC的度數(shù);
(2)若OD是∠AOC的角平分線,求∠AOE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com