【題目】如圖所示,一幢樓房AB背后有一臺(tái)階CD,臺(tái)階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°時(shí),測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺(tái)階的MN這層上曬太陽.(取1.73)
(1)求樓房的高度約為多少米?
(2)過了一會(huì)兒,當(dāng)α=45°時(shí),問小貓能否還曬到太陽?請(qǐng)說明理由.
【答案】(1)17.3;(2)當(dāng)α=45°時(shí),小貓仍可以曬到太陽.
【解析】
試題分析:(1)在Rt△ABE中,由tan60°=,即可求出AB=10tan60°=17.3米;
(2)假設(shè)沒有臺(tái)階,當(dāng)α=45°時(shí),從點(diǎn)B射下的光線與地面AD的交點(diǎn)為點(diǎn)F,與MC的交點(diǎn)為點(diǎn)H.由∠BFA=45°,可得AF=AB=17.3米,那么CF=AF﹣AC=0.1米,CH=CF=0.1米,所以大樓的影子落在臺(tái)階MC這個(gè)側(cè)面上,故小貓仍可以曬到太陽.
試題解析:(1)當(dāng)α=60°時(shí),在Rt△ABE中,∵tan60°=,∴AB=10tan60°=≈10×1.73=17.3米.即樓房的高度約為17.3米;
(2)當(dāng)α=45°時(shí),小貓仍可以曬到太陽.理由如下:
假設(shè)沒有臺(tái)階,當(dāng)α=45°時(shí),從點(diǎn)B射下的光線與地面AD的交點(diǎn)為點(diǎn)F,與MC的交點(diǎn)為點(diǎn)H.
∵∠BFA=45°,∴tan45°==1,此時(shí)的影長AF=AB=17.3米,∴CF=AF﹣AC=17.3﹣17.2=0.1米,∴CH=CF=0.1米,∴大樓的影子落在臺(tái)階MC這個(gè)側(cè)面上,∴小貓仍可以曬到太陽.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,觀測點(diǎn)A、旗桿DE的底端D、某樓房CB的底端C三點(diǎn)在一條直線上,從點(diǎn)A處測得樓頂端B的仰角為22°,此時(shí)點(diǎn)E恰好在AB上,從點(diǎn)D處測得樓頂端B的仰角為38.5°.已知旗桿DE的高度為12米,試求樓房CB的高度.(參考數(shù)據(jù):sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)思考:
(1)如圖1,已知AB∥CD,探究下面圖形中∠APC和∠PAB、∠PCD的關(guān)系,并證明你的結(jié)論
(2)①如圖2,已知AA1∥BA1 , 請(qǐng)你猜想∠A1 , ∠B1 , ∠B2 , ∠A2、∠A3的關(guān)系,并證明你的猜想;
②如圖3,已知AA1∥BAn , 直接寫出∠A1 , ∠B1 , ∠B2 , ∠A2、…∠Bn﹣1、∠An的關(guān)系
(3)①如圖4所示,若AB∥EF,用含α,β,γ的式子表示x,應(yīng)為
A.180°+α+β﹣γ B.180°﹣α﹣γ+β C.β+γ﹣α D.α+β+γ
②如圖5,AB∥CD,且∠AFE=40°,∠FGH=90°,∠HMN=30°,∠CNP=50°,請(qǐng)你根據(jù)上述結(jié)論直接寫出∠GHM的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)據(jù)1,2,8,5,3,9,5,4,5,4的眾數(shù)是_________,中位數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù) 的圖象與反比例函數(shù) 的圖象交于點(diǎn)A﹙2,5﹚、
C﹙5,n﹚,交y軸于點(diǎn)B,交x軸于點(diǎn)D.
(1)求反比例函數(shù) 和一次函數(shù) 的表達(dá)式;
(2)連接OA、OC.求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某倉儲(chǔ)中心有一斜坡AB,其坡度為i=1:2,頂部A處的高AC為4m,B.C在同一水平地面上.
(1)求斜坡AB的水平寬度BC;
(2)矩形DEFG為長方體貨柜的側(cè)面圖,其中DE=2.5m,EF=2m,將該貨柜沿斜坡向上運(yùn)送,當(dāng)BF=3.5m時(shí),求點(diǎn)D離地面的高.(≈2.236,結(jié)果精確到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊的中點(diǎn),E、F分別在AD及其延長線上,CE∥BF,連結(jié)BE、CF.
(1)圖中的四邊形BFCE是平行四邊形嗎?為什么?
(2)若AB=AC,其它條件不變,那么四邊形BFCE是菱形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)已知a+b=-3,ab=5,求多項(xiàng)式4a2b+4ab2-4a-4b的值;
(2)已知x2-3x-1=0,求代數(shù)式3-3 x2+9x的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形OABC中,OA=3,AB=6,以O(shè)A,OC所在的直線為坐標(biāo)軸,建立如圖1的平面直角坐標(biāo)系.將矩形OABC繞點(diǎn)O順時(shí)針方向旋轉(zhuǎn),得到矩形ODEF,當(dāng)點(diǎn)B在直線DE上時(shí),設(shè)直線DE和x軸交于點(diǎn)P,與y軸交于點(diǎn)Q.
(1)求證:△BCQ≌△ODQ;
(2)求點(diǎn)P的坐標(biāo);
(3)若將矩形OABC向右平移(圖2),得到矩形ABCG,設(shè)矩形ABCG與矩形ODEF重疊部分的面積為S,OG=x,請(qǐng)直接寫出x≤3時(shí),S與x之間的函數(shù)關(guān)系式,并且寫出自變量x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com