⊙O的半徑為3,⊙A的半徑為1,OA=2,那么⊙O與⊙A的位置關系是( )
A.外離
B.外切
C.內切
D.相交
【答案】分析:根據(jù)圓心距與半徑之間的數(shù)量關系判斷⊙O與⊙A的位置關系.
解答:解:∵⊙O的半徑為3,⊙A的半徑為1,OA=2,
則3-1=2,
∴根據(jù)圓心距與半徑之間的數(shù)量關系可知⊙O與⊙A的位置關系是內切.
故選C.
點評:本題考查了由數(shù)量關系來判斷兩圓位置關系的方法.設兩圓的半徑分別為R和r,且R≥r,圓心距為P,則外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側,AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,⊙P內含于⊙O,⊙O的弦AB與⊙P相切,且AB∥OP.若⊙O的半徑為3,⊙P的半徑為1,則弦AB的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知弓形的弧所對的圓心角為60°,弓形所在的半徑為a,則這個弓形的面積是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,△ABC中,AB=BC=CA=6,BC在x軸上,BC邊上的高線AO在y軸上,直線△APC點轉動(與線段BC沒有交點).設與AB、l、x軸相切的⊙O1的半徑為r1,與AC、l、x軸相切的⊙O2的半徑為r2
(1)當直線l繞點A轉到任何位置時,⊙O1、⊙O2的面積之和最小,為什么?
(2)若r1-r2=
3
,求圖象經過點O1、O2的一次函數(shù)解析式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知四邊形ABCD外接⊙O的半徑為5,對角線AC與BD的交點為E,且AB2=AE•AC,BD=8,求△ABD的面積.

查看答案和解析>>

同步練習冊答案