【題目】如圖,在Rt△ABC中,∠ACB=90°,AO△ABC的角平分線.以O為圓心,OC為半徑作⊙O.

(1)求證:AB⊙O的切線.

2)已知AOO于點(diǎn)E,延長(zhǎng)AOO于點(diǎn)D,tanD=,求的值.

(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長(zhǎng).

【答案】(1)證明見(jiàn)解析(2) (3)

【解析】試題分析:(1)過(guò)OOF⊥ABF,由角平分線上的點(diǎn)到角兩邊的距離相等即可得證;(2)連接CE,證明△ACE∽△ADC可得= tanD;(3)先由勾股定理求得AE的長(zhǎng),再證明△B0F∽△BAC,得,設(shè)BO="y" BF=z,列二元一次方程組即可解決問(wèn)題.

試題解析:(1)證明:作OF⊥ABF

∵AO∠BAC的角平分線,∠ACB=90

∴OC=OF

∴AB⊙O的切線

2)連接CE

∵AO∠BAC的角平分線,

∴∠CAE=∠CAD

∵∠ACE所對(duì)的弧與∠CDE所對(duì)的弧是同弧

∴∠ACE=∠CDE

∴△ACE∽△ADC

= tanD

3)先在△ACO中,設(shè)AE=x,

由勾股定理得

(x3)="(2x)" 3 ,解得x="2,"

∵∠BFO=90°=∠ACO

易證Rt△B0F∽R(shí)t△BAC

設(shè)BO=y BF=z

4z=93y,4y=123z

解得z=y=

∴AB=4=

考點(diǎn):圓的綜合題.

型】解答
結(jié)束】
22

【題目】已知:二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)B在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,線段O、OC的長(zhǎng)(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且A點(diǎn)坐標(biāo)為(-6,0).

(1)求此二次函數(shù)的表達(dá)式;

(2)若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過(guò)點(diǎn)E作EF∥AC交BC于點(diǎn)F,連接CE,設(shè)AE的長(zhǎng)為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

【答案】(1)y=-x2x+8(2)

【解析】試題分析:(1)求出一元二次方程的兩根即可求出兩點(diǎn)坐標(biāo),把B、C兩點(diǎn)坐標(biāo)代入二次函數(shù)的解析式就可解答;

(2)過(guò)點(diǎn)FFGAB,垂足為G,由EFAC,得BEF∽△BAC,利用相似比求EF利用sin∠FEG=sin∠CABFG,根據(jù)S=SBCE-SBFE,求Sm之間的函數(shù)關(guān)系式.

解:(1)解方程x2-10x+16=0得x12x28

∴B2,0)、C0,8

∴所求二次函數(shù)的表達(dá)式為y=-x2x8

(2)∵AB=8,OC=8,依題意,AE=m,則BE=8-m,

∵OA6,OC8, ∴AC10.

∵EF∥AC, ∴△BEF∽△BAC.

.  即. ∴EF.

過(guò)點(diǎn)F作FG⊥AB,垂足為G,

sin∠FEGsin∠CAB.∴. 

∴FG·8m.

∴SSBCESBFE

0m8

點(diǎn)睛:本題考查了一元二次方程的解法,待定系數(shù)法求函數(shù)關(guān)系系,相似三角形的判定與性質(zhì),銳角三角函數(shù)的定義,割補(bǔ)法求圖形的面積,熟練掌握待定系數(shù)法求二次函數(shù)關(guān)系式、相似三角形的判定與性質(zhì)是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點(diǎn)C處測(cè)得樓頂B的仰角為60°,在斜坡上的D處測(cè)得樓頂B的仰角為45°,其中點(diǎn)A,C,E在同一直線上.

(1)求坡底C點(diǎn)到大樓距離AC的值;

(2)求斜坡CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,AB⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E⊙O上.

1)若∠AOD=52°,求∠DEB的度數(shù);

2)若OC=3,OA=5,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角三角形ABC中,BC=6,∠ABC=45°,BD平分∠ABC,M、N分別是BD、BC上的動(dòng)點(diǎn),則CM+MN的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖正方形ABCD的邊長(zhǎng)為6,點(diǎn)E、F分別在AB,AD,CE=3且∠ECF=45°,CF長(zhǎng)為(

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在O的內(nèi)接四邊形ABCD中,AB=ADC=120°,點(diǎn)E上.

1)求∠E的度數(shù);

2)連接OD、OE,當(dāng)∠DOE=90°時(shí),AE恰好為⊙O的內(nèi)接正n邊形的一邊,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+3與x軸相交于點(diǎn)A(﹣1,0)、B(3,0),與y軸相交于點(diǎn)C,點(diǎn)P為線段OB上的動(dòng)點(diǎn)(不與O、B重合),過(guò)點(diǎn)P垂直于x軸的直線與拋物線及線段BC分別交于點(diǎn)E、F,點(diǎn)D在y軸正半軸上,OD=2,連接DE、OF.

(1)求拋物線的解析式;

(2)當(dāng)四邊形ODEF是平行四邊形時(shí),求點(diǎn)P的坐標(biāo);

(3)過(guò)點(diǎn)A的直線將(2)中的平行四邊形ODEF分成面積相等的兩部分,求這條直線的解析式.(不必說(shuō)明平分平行四邊形面積的理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠A=45°,AB=,AC=6,點(diǎn)D,E為邊AC上的點(diǎn),AD=1,CE=2,點(diǎn)F為線段DE上一點(diǎn)(不與D,E重合),分別以點(diǎn)D、E為圓心,DF、EF為半徑作圓.若兩圓與邊AB,BC共有三個(gè)交點(diǎn)時(shí),線段DF長(zhǎng)度的取值范圍是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某酒店大門的旋轉(zhuǎn)門內(nèi)部由三塊寬為2高為3米的玻璃隔板組成,三塊玻璃擺放時(shí)夾角相同若入口處兩根立柱之間的距離為2則兩立柱底端中點(diǎn)到中央轉(zhuǎn)軸底端的距離為(  )

A. B. 2 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案