【題目】問題提出
(1)如圖①,已知△ABC,請(qǐng)畫出△ABC關(guān)于直線AC對(duì)稱的三角形.
問題探究
(2)如圖②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在邊BC、CD上分別存在點(diǎn)G、H,使得四邊形EFGH的周長最。咳舸嬖,求出它周長的最小值;若不存在,請(qǐng)說明理由.
問題解決
(3)如圖③,有一矩形板材ABCD,AB=3米,AD=6米,現(xiàn)想從此板材中裁出一個(gè)面積盡可能大的四邊形EFGH部件,使∠EFG=90°,EF=FG= 米,∠EHG=45°,經(jīng)研究,只有當(dāng)點(diǎn)E、F、G分別在邊AD、AB、BC上,且AF<BF,并滿足點(diǎn)H在矩形ABCD內(nèi)部或邊上時(shí),才有可能裁出符合要求的部件,試問能否裁得符合要求的面積盡可能大的四邊形EFGH部件?若能,求出裁得的四邊形EFGH部件的面積;若不能,請(qǐng)說明理由.
【答案】
(1)
解:如圖1,△ADC即為所求;
(2)
解:存在,理由:作E關(guān)于CD的對(duì)稱點(diǎn)E′,
作F關(guān)于BC的對(duì)稱點(diǎn)F′,
連接E′F′,交BC于G,交CD于H,連接FG,EH,
則F′G=FG,E′H=EH,則此時(shí)四邊形EFGH的周長最小,
由題意得:BF′=BF=AF=2,DE′=DE=2,∠A=90°,
∴AF′=6,AE′=8,
∴E′F′=10,EF=2 ,
∴四邊形EFGH的周長的最小值=EF+FG+GH+HE=EF+E′F′=2 +10,
∴在邊BC、CD上分別存在點(diǎn)G、H,
使得四邊形EFGH的周長最小,
最小值為2 +10;
(3)
解:能裁得,
理由:∵EF=FG= ,∠A=∠B=90°,∠1+∠AFE=∠2+AFE=90°,
∴∠1=∠2,
在△AEF與△BGF中, ,
∴△AEF≌△BGF,
∴AF=BG,AE=BF,設(shè)AF=x,則AE=BF=3﹣x,
∴x2+(3﹣x)2=( )2,解得:x=1,x=2(不合題意,舍去),
∴AF=BG=1,BF=AE=2,
∴DE=4,CG=5,
連接EG,
作△EFG關(guān)于EG的對(duì)稱△EOG,
則四邊形EFGO是正方形,∠EOG=90°,
以O(shè)為圓心,以EG為半徑作⊙O,
則∠EHG=45°的點(diǎn)在⊙O上,
連接FO,并延長交⊙O于H′,則H′在EG的垂直平分線上,
連接EH′GH′,則∠EH′G=45°,
此時(shí),四邊形EFGH′是要想裁得符合要求的面積最大的,
∴C在線段EG的垂直平分線設(shè),
∴點(diǎn)F,O,H′,C在一條直線上,
∵EG= ,
∴OF=EG= ,
∵CF=2 ,
∴OC= ,
∵OH′=OE=FG= ,
∴OH′<OC,
∴點(diǎn)H′在矩形ABCD的內(nèi)部,
∴可以在矩形ABCD中,裁得符合條件的面積最大的四邊形EFGH′部件,
這個(gè)部件的面積= EGFH′= × ×( + )=5+ ,
∴當(dāng)所裁得的四邊形部件為四邊形EFGH′時(shí),裁得了符合條件的最大部件,這個(gè)部件的面積為(5+ )m2.
【解析】本題考查了全等三角形的判定和性質(zhì),矩形的性質(zhì),勾股定理,軸對(duì)稱的性質(zhì),存在性問題,掌握的作出輔助線利用對(duì)稱的性質(zhì)解決問題是解題的關(guān)鍵.(1)作B關(guān)于AC 的對(duì)稱點(diǎn)D,連接AD,CD,△AC即為所求;(2)作E關(guān)于CD的對(duì)稱點(diǎn)E′,作F關(guān)于BC的對(duì)稱點(diǎn)F′,連接E′F′,得到此時(shí)四邊形EFGH的周長最小,根據(jù)軸對(duì)稱的性質(zhì)得到BF′=BF=AF=2,DE′=DE=2,∠A=90°,于是得到AF′=6,AE′=8,求出E′F′=10,EF=2 即可得到結(jié)論;(3)根據(jù)余角的性質(zhì)得到1=∠2,推出△AEF≌△BGF,根據(jù)全等三角形的性質(zhì)得到AF=BG,AE=BF,設(shè)AF=x,則AE=BF=3﹣x根據(jù)勾股定理列方程得到AF=BG=1,BF=AE=2,作△EFG關(guān)于EG的對(duì)稱△EOG,則四邊形EFGO是正方形,∠EOG=90°,以O(shè)為圓心,以EG為半徑作⊙O,則∠EHG=45°的點(diǎn)在⊙O上,連接FO,并延長交⊙O于H′,則H′在EG的垂直平分線上,連接EH′GH′,則∠EH′G=45°,于是得到四邊形EFGH′是符合條件的最大部件,根據(jù)矩形的面積公式即可得到結(jié)論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,已知DE∥BC.
(1)△ADE與△ABC相似嗎?為什么?
(2)它們是位似圖形嗎?如果是,請(qǐng)指出位似中心.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.
(1)k的值是;
(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)y= 圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若 = ,則b的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位線,延長DE交△ABC的外角∠ACM的平分線于點(diǎn)F,則線段DF的長為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了打造森林城市,樹立城市新地標(biāo),實(shí)現(xiàn)綠色、共享發(fā)展理念,在城南建起了“望月閣”及環(huán)閣公園.小亮、小芳等同學(xué)想用一些測量工具和所學(xué)的幾何知識(shí)測量“望月閣”的高度,來檢驗(yàn)自己掌握知識(shí)和運(yùn)用知識(shí)的能力.他們經(jīng)過觀察發(fā)現(xiàn),觀測點(diǎn)與“望月閣”底部間的距離不易測得,因此經(jīng)過研究需要兩次測量,于是他們首先用平面鏡進(jìn)行測量.方法如下:如圖,小芳在小亮和“望月閣”之間的直線BM上平放一平面鏡,在鏡面上做了一個(gè)標(biāo)記,這個(gè)標(biāo)記在直線BM上的對(duì)應(yīng)位置為點(diǎn)C,鏡子不動(dòng),小亮看著鏡面上的標(biāo)記,他來回走動(dòng),走到點(diǎn)D時(shí),看到“望月閣”頂端點(diǎn)A在鏡面中的像與鏡面上的標(biāo)記重合,這時(shí),測得小亮眼睛與地面的高度ED=1.5米,CD=2米,然后,在陽光下,他們用測影長的方法進(jìn)行了第二次測量,方法如下:如圖,小亮從D點(diǎn)沿DM方向走了16米,到達(dá)“望月閣”影子的末端F點(diǎn)處,此時(shí),測得小亮身高FG的影長FH=2.5米,F(xiàn)G=1.65米.
如圖,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,測量時(shí)所使用的平面鏡的厚度忽略不計(jì),請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出“望月閣”的高AB的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】青海新聞網(wǎng)訊:2016年2月21日,西寧市首條綠道免費(fèi)公共自行車租賃系統(tǒng)正式啟用.市政府今年投資了112萬元,建成40個(gè)公共自行車站點(diǎn)、配置720輛公共自行車.今后將逐年增加投資,用于建設(shè)新站點(diǎn)、配置公共自行車.預(yù)計(jì)2018年將投資340.5萬元,新建120個(gè)公共自行車站點(diǎn)、配置2205輛公共自行車.
(1)請(qǐng)問每個(gè)站點(diǎn)的造價(jià)和公共自行車的單價(jià)分別是多少萬元?
(2)請(qǐng)你求出2016年到2018年市政府配置公共自行車數(shù)量的年平均增長率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④S△ABC=4S△ADF . 其中正確的有( )
A.1個(gè)
B.2 個(gè)
C.3 個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,BD是它的一條對(duì)角線,過A、C兩點(diǎn)作AE⊥BD,CF⊥BD,垂足分別為E、F,延長AE、CF分別交CD、AB于M、N.
(1)求證:四邊形CMAN是平行四邊形.
(2)已知DE=4,F(xiàn)N=3,求BN的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com