【題目】如圖所示,直線DP和圓O相切于點(diǎn)C,交直線AE的延長(zhǎng)線于點(diǎn)P,過點(diǎn)C作AE的垂線,交AE于點(diǎn)F,交圓O于點(diǎn)B,作平行四邊形ABCD,連接BE,DO,CO.
(1)求證:DA=DC;
(2)求∠P及∠AEB的大。
【答案】
(1)證明:在平行四邊形ABCD中,AD∥BC,
∵CB⊥AE,
∴AD⊥AE,
∴∠DAO=90°,
∵DP與⊙O相切于點(diǎn)C,
∴DC⊥OC,
∴∠DCO=90°,
在Rt△DAO和Rt△DCO中,
,
∴Rt△DAO≌△Rt△DCO,
∴DA=DC
(2)解:∵CB⊥AE,AE是直徑,
∴CF=FB= BC,
∵四邊形ABCD是平行四邊形,
∴AD=BC,
∴CF= AD,
∵CF∥DA,
∴△PCF∽△PDA,
∴ = = ,
∴PC= PD,DC= PD,
∵DA=DC,
∴DA= PD,
在Rt△DAP中,∠P=30°,
∵DP∥AB,
∴∠FAB=∠P=30°,
∵AE是⊙O的直徑,
∴∠ABE=90°,
∴∠AEB=60°.
【解析】(1)欲證明DA=DC,只要證明Rt△DAO≌△Rt△DCO即可;(2)想辦法證明∠P=30°即可解決問題;
【考點(diǎn)精析】本題主要考查了平行四邊形的性質(zhì)和切線的性質(zhì)定理的相關(guān)知識(shí)點(diǎn),需要掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過A,B兩點(diǎn),點(diǎn)P在線段OA上,從點(diǎn)O出發(fā),向點(diǎn)A以1個(gè)單位/秒的速度勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q在線段AB上,從點(diǎn)A出發(fā),向點(diǎn)B以個(gè)單位/秒的速度勻速運(yùn)動(dòng),連接PQ,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)求拋物線的解析式;
(2)問:當(dāng)t為何值時(shí),△APQ為直角三角形;
(3)過點(diǎn)P作PE∥y軸,交AB于點(diǎn)E,過點(diǎn)Q作QF∥y軸,交拋物線于點(diǎn)F,連接EF,當(dāng)EF∥PQ時(shí),求點(diǎn)F的坐標(biāo).
(4)設(shè)拋物線頂點(diǎn)為M,連接BP,BM,MQ,問:是否存在t的值,使以B,Q,M為頂點(diǎn)的三角形與以O(shè),B,P為頂點(diǎn)的三角形相似?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,B(2m,0),C(3m,0)是平面直角坐標(biāo)系中兩點(diǎn),其中m為常數(shù),且m>0,E(0,n)為y軸上一動(dòng)點(diǎn),以BC為邊在x軸上方作矩形ABCD,使AB=2BC,畫射線OA,把△ADC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°得△A′D′C′,連接ED′,拋物線y=ax2+bx+n(a≠0)過E,A′兩點(diǎn).
(1)填空:∠AOB= °,用m表示點(diǎn)A′的坐標(biāo):A′( , );
(2)當(dāng)拋物線的頂點(diǎn)為A′,拋物線與線段AB交于點(diǎn)P,且=時(shí),△D′OE與△ABC是否相似?說明理由;
(3)若E與原點(diǎn)O重合,拋物線與射線OA的另一個(gè)交點(diǎn)為點(diǎn)M,過M作MN⊥y軸,垂足為N:
①求a,b,m滿足的關(guān)系式;
②當(dāng)m為定值,拋物線與四邊形ABCD有公共點(diǎn),線段MN的最大值為10,請(qǐng)你探究a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)的圖象與一次函數(shù)y=ax+b的圖象相交于點(diǎn)A(1,4)和點(diǎn)B(n,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)當(dāng)一次函數(shù)的值小于反比例函數(shù)的值時(shí),直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“救死扶傷”是我國的傳統(tǒng)美德,某媒體就“老人摔倒該不該扶”進(jìn)行了調(diào)查,將得到的數(shù)據(jù)經(jīng)統(tǒng)計(jì)分析后繪制成如圖所示的扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖判斷下列說法,其中錯(cuò)誤的一項(xiàng)是( )
A.認(rèn)為依情況而定的占27%
B.認(rèn)為該扶的在統(tǒng)計(jì)圖中所對(duì)應(yīng)的圓心角是234°
C.認(rèn)為不該扶的占8%
D.認(rèn)為該扶的占92%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,C城市在A城市正東方向,現(xiàn)計(jì)劃在A、C兩城市間修建一條高速公路(即線段AC),經(jīng)測(cè)量,森林保護(hù)區(qū)的中心P在A城市的北偏東60°方向上,在線段AC上距A城市120km的B處測(cè)得P在北偏東30°方向上,已知森林保護(hù)區(qū)是以點(diǎn)P為圓心,100km為半徑的圓形區(qū)域,請(qǐng)問計(jì)劃修建的這條高速公路是否穿越保護(hù)區(qū),為什么?(參考數(shù)據(jù): ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是△ABC的內(nèi)心,連接OB,OC,過點(diǎn)O作EF∥BC分別交AB,AC于點(diǎn)E,F(xiàn).已知△ABC的周長(zhǎng)為8,BC=x,△AEF的周長(zhǎng)為y,則表示y與x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB切⊙O于點(diǎn)B,OA=6,sinA= ,弦BC∥OA.
(1)求AB的長(zhǎng);
(2)求四邊形AOCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx+b分別與x軸、y軸交于A、B兩點(diǎn),過點(diǎn)B的拋物線y=﹣ (x﹣2)2+m的頂點(diǎn)P在這條直線上,以AB為邊向下方做正方形ABCD.
(1)當(dāng)m=2時(shí),k= , b=;當(dāng)m=﹣1時(shí),k= , b=;
(2)根據(jù)(1)中的結(jié)果,用含m的代數(shù)式分別表示k與b,并證明你的結(jié)論;
(3)當(dāng)正方形ABCD的頂點(diǎn)C落在拋物線的對(duì)稱軸上時(shí),求對(duì)應(yīng)的拋物線的函數(shù)關(guān)系式;
(4)當(dāng)正方形ABCD的頂點(diǎn)D落在拋物線上時(shí),直接寫出對(duì)應(yīng)的直線y=kx+b的函數(shù)關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com