【題目】下列運(yùn)算中,結(jié)果正確的是( )
A.a3a4=a12
B.a10÷a2=a5
C.a2+a3=a5
D.4a﹣a=3a
【答案】D
【解析】解:A、應(yīng)為a3a4=a7 , 故本選項(xiàng)錯(cuò)誤; B、應(yīng)為a10÷a2=a8 , 故本選項(xiàng)錯(cuò)誤;
C、a2與a3不是同類項(xiàng),不能合并,故本選項(xiàng)錯(cuò)誤;
D、4a﹣a=3a,正確.
故選D.
根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;合并同類項(xiàng)只把系數(shù)相加減,字母與字母的次數(shù)不變,對(duì)各選項(xiàng)分析判斷后利用排除法求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=ax+b(a≠0)經(jīng)過點(diǎn)A(﹣3,0)和點(diǎn)B(0,2),那么關(guān)于x的方程ax+b=0的解是( )
A.x=﹣3
B.x=﹣1
C.x=0
D.x=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,過點(diǎn)D作DE∥AC且DE= AC,連接AE交OD于點(diǎn)F,連接CE、OE.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為2,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊△ABC中,AO是BC邊上的高,D為AO上一點(diǎn),以CD為一邊,在CD下方作等邊△CDE,連接BE.
(1)求證:△ACD≌△BCE
(2)過點(diǎn)C作CH⊥BE,交BE的延長線于H,若BC=8,求CH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:y=(x-1)2+1與y軸交于點(diǎn)A,過點(diǎn)A與點(diǎn)(1,3)的直線與C1交于點(diǎn)B
(1) 求直線AB的函數(shù)表達(dá)式
(2) 如圖1,若點(diǎn)P為直線AB下方的C1上一點(diǎn),求點(diǎn)P到直線AB的距離的最大值
(3) 如圖2,將直線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后恰好經(jīng)過C1的頂點(diǎn)C,沿射線AC的方向平移拋物線C1得到拋物線C2,C2的頂點(diǎn)為D,兩拋物線相交于點(diǎn)E.設(shè)交點(diǎn)E的橫坐標(biāo)為m.若∠AED=90°,求m的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD為菱形,點(diǎn)P為對(duì)角線BD上的一個(gè)動(dòng)點(diǎn).
(1)如圖1,連接AP并延長交BC的延長線于點(diǎn)E,連接 PC,求證:∠AEB=∠PCD.
(2)如圖1,當(dāng)PA=PD且PC⊥BE時(shí),求∠ABC的度數(shù).
(3)連接AP并延長交射線BC于點(diǎn)E,連接 PC,若∠ABC=90°且ΔPCE是等腰三角形,求得∠PEC的度數(shù) (第(3)問 直接寫出結(jié)果,不寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,BD平分∠ABC,交AC于點(diǎn)D,經(jīng)過B、D兩點(diǎn)的⊙O交AB 于點(diǎn)E,交BC于點(diǎn)F,EB為⊙O的直徑.
(1)求證:AC是⊙O的切線;
(2)當(dāng)BC=2,cos∠ABC=時(shí),求⊙O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com