【題目】某區(qū)為爭創(chuàng)全國文明衛(wèi)生城,2016年區(qū)政府對區(qū)綠化工程投入的資金是2000萬元,2018年投的資金是2420萬元,且2017年和2018年,每年投入資金的年平均增長率相同.
(1)求該區(qū)對區(qū)綠化工程投入資金的年平均增長率;
(2)若投入資金的年平均增長率不變,那么該區(qū)在2020年需投入資金多少萬元?
【答案】(1)該區(qū)對區(qū)綠化工程投入資金的年平均增長率為10%.(2)該區(qū)在2020年需投入資金2928.2萬元.
【解析】
(1)等量關(guān)系為:2016年該區(qū)對區(qū)綠化工程投入資金×(1+增長率)2=2018年該區(qū)對區(qū)綠化工程投入資金,把相關(guān)數(shù)值代入求解即可;
(2)2020年該區(qū)對區(qū)綠化工程投入資金=2018年該區(qū)對區(qū)綠化工程投入資金×(1+增長率)2.
解:(1)設(shè)該區(qū)對區(qū)綠化工程投入資金的年平均增長率為x,
根據(jù)題意得:,
解得:(不合題意,舍去).
答:該區(qū)對區(qū)綠化工程投入資金的年平均增長率為10%.
(2)(萬元).
答:該區(qū)在2020年需投入資金2928.2萬元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別與x軸和y軸交于點(diǎn)A和點(diǎn)B.P是線段AB上一動點(diǎn)(不與A、B重合),過點(diǎn)P分別作PC⊥y軸于點(diǎn)C,PD⊥x軸于點(diǎn)D.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)如圖1,求線段AB的長度;
(2)如圖2,當(dāng)時,求點(diǎn)P的坐標(biāo);
(3)如圖3,作直線OP,若直線OP的解析式為,求四邊形OCPD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有以下兩種擺放方式:
(1)當(dāng)有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待70位顧客共同就餐,但餐廳只有18張這樣的餐桌,若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動員的重點(diǎn)對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
【答案】(1)50;(2)16;(3)56(4)見解析
【解析】試題分析:
(1)根據(jù)統(tǒng)計圖中的信息可知,獲得A等的有10人,占抽查總數(shù)的20%,由此即可計算出抽查學(xué)生的總數(shù);
(2)由(1)中計算結(jié)果結(jié)合統(tǒng)計圖中已知的A、B、D三個等級的人數(shù)即可求得C等級的人數(shù),并由此補(bǔ)全條形統(tǒng)計圖;
(3)由(1)中求得的被抽查學(xué)生的總數(shù)及獲得D等級的有4人可計算出獲得D等級的人數(shù)所占的百分比,即可求得800人中可能獲得D等級的人數(shù);
(4)設(shè)兩名男生為A1、A2,兩名女生為B1、B2,畫出樹形圖分析即可求得所求概率;
試題解析:
(1)10÷20%=50(名)
答:本次抽樣調(diào)查共抽取了50名學(xué)生.
(2)50-10-20-4=16(名)
答:測試結(jié)果為C等級的學(xué)生有16名.
圖形統(tǒng)計圖補(bǔ)充完整如下圖所示:
(3)700×=56(名)
答:估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有56名.
(4)畫樹狀圖法:設(shè)體能為A等級的兩名男生分別為,體能為A等級的兩名女生分別為,,畫樹狀圖如下:
由樹狀圖可知,共有12 種結(jié)果,每種結(jié)果出現(xiàn)的可能性相同,而抽取的兩人都是男生的結(jié)果有兩種:(),(,), ∴P(抽取的兩人是男生)=.
【題型】解答題
【結(jié)束】
20
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線AB與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,且OA=3,AB=5.點(diǎn)P從點(diǎn)O出發(fā)沿OA以每秒1個單位長的速度向點(diǎn)A勻速運(yùn)動,到達(dá)點(diǎn)A后立刻以原來的速度沿AO返回;點(diǎn)Q從點(diǎn)A出發(fā)沿AB以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動.伴隨著P、Q的運(yùn)動,DE保持垂直平分PQ,且交PQ于點(diǎn)D,交折線QB﹣BO﹣OP于點(diǎn)E.點(diǎn)P、Q同時出發(fā),當(dāng)點(diǎn)Q到達(dá)點(diǎn)B時停止運(yùn)動,點(diǎn)P也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動的時間是t秒(t>0).
(1)求直線AB的解析式;
(2)在點(diǎn)P從O向A運(yùn)動的過程中,求△APQ的面積S與t之間的函數(shù)關(guān)系式(不必寫出t的取值范圍);
(3)在點(diǎn)E從B向O運(yùn)動的過程中,完成下面問題:
①四邊形QBED能否成為直角梯形?若能,請求出t的值;若不能,請說明理由;
②當(dāng)DE經(jīng)過點(diǎn)O時,請你直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了傳承優(yōu)秀傳統(tǒng)文化,某校組織800名學(xué)生參加了一次“漢字聽寫”大賽.賽后發(fā)現(xiàn)所有參賽學(xué)生的成績均不低于60分,為了更好地了解本次大賽的成績分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績作為樣本,成績?nèi)缦拢?/span>
90,92,81,82,78,95,86,88,72,66,62,68,89,86,93,83,100,73,76,80,77,81,86,75,82,85,71,68,74,98,90,97,85,84,78,73,65,92,96,60
對上述成績進(jìn)行了整理,得到下列不完整的統(tǒng)計圖表:
成績x/分 | 頻數(shù) | 頻率 |
60≤x<70 | 6 | 0.15 |
70≤x<80 | a | b |
80≤x<90 | 14 | 0.35 |
90≤x≤100 | c | d |
請根據(jù)所給信息,解答下列問題:
(1)a= ,d= .
(2)請補(bǔ)全頻數(shù)分布直方圖
(3)若成績在90分以上(包括90分)的為“優(yōu)等,請你估計參加這次比賽的800名學(xué)生中成績“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某市交通運(yùn)管部門月份的最新數(shù)據(jù),目前該市市面上的共享單車數(shù)量已達(dá)萬輛,共享單車也逐漸成為高校學(xué)生喜愛的“綠色出行”方式之一.某高校為了解本校學(xué)生出行使用共享單車的情況,隨機(jī)調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計表.
使用次數(shù) | |||||
人數(shù) |
(1)求這天部分出行學(xué)生使用共享單車次數(shù)的平均數(shù),中位數(shù)和眾數(shù).
(2)若該校這天有名學(xué)生出行,估計使用共享單車次數(shù)在次以上(含次)的學(xué)生數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖正比例函數(shù)y=2x的圖像與一次函數(shù) 的圖像交于點(diǎn)A(m,2),一次函數(shù)的圖象經(jīng)過點(diǎn)B(-2,-1)與y軸交點(diǎn)為C與x軸交點(diǎn)為D.
(1)求一次函數(shù)的解析式;
(2)求的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,對角線AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,若∠CAE=15°.
(1)求證:△AOB是等邊三角形;
(2)求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AB上一點(diǎn),D為AC的中點(diǎn),E為BC的中點(diǎn),F為DE的中點(diǎn).
(1)若AC=4,BC=6,求CF的長.
(2)若AB=16CF,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com