如圖,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,直徑AB左側(cè)的半圓上有一點(diǎn)動(dòng)點(diǎn)E(不與點(diǎn)A、B重合),連結(jié)EB、ED.
(1)如果∠CBD=∠E,求證:BC是⊙O的切線(xiàn);
(2)當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),△EDB≌△ABD,并給予證明;
(3)若tanE=
3
3
,BC=
4
3
3
,求陰影部分的面積.(計(jì)算結(jié)果精確到0.1)
(參考數(shù)值:π≈3.14,
2
≈1.41,
3
≈1.73)
(1)證明:∵AB為⊙O的直徑,
∴∠ADB=90°,
即∠ABD+∠BAD=90°.
又∵∠CBD=∠E,∠BAD=∠E,
∴∠ABD+∠CBD=90°,即∠ABC=90°.
∴BC⊥AB.
∴BC是⊙O的切線(xiàn).

(2)當(dāng)點(diǎn)E運(yùn)動(dòng)到DE經(jīng)過(guò)點(diǎn)O位置時(shí),△EDB≌△ABD.證明如下:
當(dāng)點(diǎn)E運(yùn)動(dòng)到DE經(jīng)過(guò)點(diǎn)O位置時(shí),∠EBD=∠ADB=90°,
在△EDB與△ABD中,
∠EBD=∠ADB
∠ABD=∠E
BD=DB
,
∴△EDB≌△ABD(AAS).

(3)如圖,連接OD,過(guò)點(diǎn)O作OF⊥AD于點(diǎn)F,
∵∠BAD=∠E,tanE=
3
3
,
∴tan∠BAD=
3
3

又∵∠ADB=90°,
∴∠BAD=30°.
∵∠ABC=90°,BC=
4
3
3
,
∴AB=
BC
tan∠DAB
=4.
∴AO=2,OF=1,AF=AOcos∠BAD=
3

∴AD=2
3

∵AO=DO,
∴∠AOD=120°.
∴S陰影=S扇形OAD-S△AOD=
120π×22
360
-
1
2
×3=2
3
×1=
4
3
π-
3
≈2.5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△BDE中,∠BDE=90°,BC平分∠DBE交DE于點(diǎn)C,AC⊥CB交BE于點(diǎn)A,△ABC的外接圓的半徑為r.
(1)若∠E=30°,求證:BC•BD=r•ED;
(2)若BD=3,DE=4,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△ABC中∠C=90°、∠A=30°,在AC邊上取點(diǎn)O畫(huà)圓使⊙O經(jīng)過(guò)A、B兩點(diǎn),
(1)求證:以O(shè)為圓心,以O(shè)C為半徑的圓與AB相切.
(2)下列結(jié)論正確的序號(hào)是______.(少選酌情給分,多選、錯(cuò)均不給分)
①AO=2CO;
②AO=BC;
③延長(zhǎng)BC交⊙O與D,則A、B、D是⊙O的三等分點(diǎn).
④圖中陰影面積為:(
1
3
π+
3
8
)•OA2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,直線(xiàn)CD與⊙O相切于點(diǎn)C,AC平分∠DAB.
(1)求證:AD⊥DC;
(2)若AD=2,AC=
5
,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,AB與⊙O相切于點(diǎn)B,AO的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)C,連接BC.若∠A=36°,則∠C=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD的邊AD、AB分別與⊙O相切于E、F,AE=
3

(1)求弧EF的長(zhǎng).
(2)若AD=
3
+5
,直線(xiàn)MN分別交DA、DC于點(diǎn)M、N,∠DMN=60°,將直線(xiàn)MN沿射線(xiàn)DA方向平移,當(dāng)MN和⊙O第一次相切時(shí),求點(diǎn)D到直線(xiàn)MN的距離.
(3)若點(diǎn)D到直線(xiàn)MN的距離為4時(shí),請(qǐng)直接寫(xiě)出⊙O和直線(xiàn)MN的位置關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知⊙O1經(jīng)過(guò)A(-4,2),B(-3,3),C(-1,-1),O(0,0)四點(diǎn),一次函數(shù)y=-x-2的圖象是直線(xiàn)l,直線(xiàn)l與y軸交于點(diǎn)D.
(1)在右邊的平面直角坐標(biāo)系中畫(huà)出⊙O1,直線(xiàn)l與⊙O1的交點(diǎn)坐標(biāo)為_(kāi)_____;
(2)若⊙O1上存在整點(diǎn)P(橫坐標(biāo)與縱坐標(biāo)均為整數(shù)的點(diǎn)稱(chēng)為整點(diǎn)),使得△APD為等腰三角形,所有滿(mǎn)足條件的點(diǎn)P坐標(biāo)為_(kāi)_____;
(3)將⊙O1沿x軸向右平移______個(gè)單位時(shí),⊙O1與y相切;
(4)將⊙O1沿x軸向右平移______個(gè)單位時(shí),⊙O1與l相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義:定點(diǎn)與⊙O上任意一點(diǎn)之間距離的最小值稱(chēng)為點(diǎn)與⊙O之間的距離.現(xiàn)有一矩形ABCD如圖所示,AB=14,BC=12,⊙O與矩形的邊AB、BC、CD分別相切于點(diǎn)E、F、G,則點(diǎn)A與⊙O之間的距離為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直線(xiàn)AB與⊙O相切于點(diǎn)A,⊙O的半徑為2,若∠OBA=30°,則OB的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案