【題目】.E為□ABCD邊AD上一點,將ABE沿BE翻折得到FBE,點F在BD上,且EF=DF.若∠C=52°,則∠ABE=____.
【答案】51°
【解析】
由平行四邊形的性質(zhì)和折疊的性質(zhì)得出∠BFE=∠A=52°,∠FBE=∠ABE,由等腰三角形的性質(zhì)和三角形的外角性質(zhì)得出∠EDF=∠DEF=∠BFE=26°,由三角形內(nèi)角和定理求出∠ABD=102°,即可得出∠ABE的度數(shù).
∵四邊形ABCD為平行四邊形,
∴∠A=∠C=52°,AD∥BC.
由折疊的性質(zhì)可得∠ABE=∠FBE,∠A=∠BFE=52°,
∵EF=DF,
∴∠FED=∠EDF,
∴∠EFB=∠FED+∠EDF=2∠EDF=52°,即∠EDF=26°.
∵AD∥BC,
∴∠CBD=∠EDF=26°,∠ABC=180°-∠A=128°,
∴∠ABF=∠ABC-∠CBD=128°-26°=102°.
又∵∠ABE=∠FBE,
∴∠ABE=∠ABF= ×102°=51°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考體育測試前,某區(qū)教育局為了了解選報引體向上的初三男生的成績情況,隨機(jī)抽取了本區(qū)部分選報引體向上項目的初三男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖:
請你根據(jù)圖中的信息,解答下列問題:
(1)寫出扇形圖中a=%,并補全條形圖;
(2)求本次調(diào)查獲取的樣本數(shù)據(jù)的平均數(shù),眾數(shù)和中位數(shù);
(3)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達(dá)6個以上(含6個)得滿分,請你估計該區(qū)體育中考中選報引體向上的男生能獲得滿分的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一副三角板(直角三角板和直角三角板,其中,,)的直角頂點重疊在一起.
(1)如圖1,當(dāng)平分時,是多少度?
(2)如圖2,當(dāng)不平分時,是多少度?
(3)當(dāng)的余角的4倍等于時,求此時的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知下列方程:①;②0.3x=1;③;④x2﹣4x=3;⑤x=6;⑥x+2y=0.其中一元一次方程的個數(shù)是( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=50°.
(1)若點I是∠ABC,∠ACB的角平分線的交點,則∠BIC= °.
(2)若點D是∠ABC,∠ACB的外角平分線的交點,則∠BDC= °.
(3)若點E是∠ABC,∠ACG的平分線的交點,探索∠BEC與∠BAC的數(shù)量關(guān)系,并說明理由.
(4)在(3)的條件下,若CE∥AB,求∠ACB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,連接BE、AD,P為BD中點,M為AB中點、N為DE中點,連接PM、PN、MN.
(1)試判斷△PMN的形狀,并證明你的結(jié)論;
(2)若CD=5,AC=12,求△PMN的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上一點,且AB=10.動點P從點O出發(fā),以每秒6個單位長度的速度沿數(shù)軸向右勻速運動,設(shè)運動時間為t(t>0)秒.
(1)寫出數(shù)軸上點B表示的數(shù) ;當(dāng)t=3時,OP=
(2)動點R從點B出發(fā),以每秒8個單位長度的速度沿數(shù)軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時追上點P?
(3)動點R從點B出發(fā),以每秒8個單位長度的速度沿數(shù)軸向右勻速運動,若點P,R同時出發(fā),問點R運動多少秒時PR相距2個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=x+3的圖象與x軸交于點A,二次函數(shù)y=x2+mx+n的圖象經(jīng)過點A.
(1)當(dāng)m=4時,求n的值;
(2)設(shè)m=﹣2,當(dāng)﹣3≤x≤0時,求二次函數(shù)y=x2+mx+n的最小值;
(3)當(dāng)﹣3≤x≤0時,若二次函數(shù)﹣3≤x≤0時的最小值為﹣4,求m、n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點B,F,C,E在直線l上(F,C之間不能直接測量),點A,D在l異側(cè),測得AB=DE,AC=DF,BF=EC.
(1)求證:△ABC≌△DEF;
(2)指出圖中所有平行的線段,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com