【題目】甲、乙兩個港口相距72千米,一艘輪船從甲港出發(fā),順流航行3小時到達(dá)乙港,休息1小時后立即返回;一艘快艇在輪船出發(fā)2小時后從乙港出發(fā),逆流航行2小時到甲港,并立即返回(掉頭時間忽略不計)。已知水流速度是2千米/時,下圖表示輪船和快艇距甲港的距離y(千米)與輪船出發(fā)時間x(小時)之間的函數(shù)關(guān)系式,結(jié)合圖象解答下列問題:
(順流速度=船在靜水中速度+水流速度;逆流速度=船在靜水中速度-水流速度)
(1)輪船在靜水中的速度是 千米/時;快艇在靜水中的速度是 千米/時;
(2)求快艇返回時的解析式,寫出自變量取值范圍;
(3)快艇出發(fā)多長時間,輪船和快艇在返回途中相距12千米?(直接寫出結(jié)果)
【答案】(1)22 ; 38(2)y=40x-160(4≤x≤5.8)(3)3小時或3.4小時
【解析】解:(1)22 ; 38。
(2)點F的橫坐標(biāo)為:4+72÷(38+2)=5.8 。
∴F(5.8,72),E(4,0)。
設(shè)EF解析式為y=kx+b(k≠0),則
,解得。
∴y=40x-160(4≤x≤5.8)。
(3)快艇出發(fā)3小時或3.4小時兩船相距12千米。
(1)輪船在靜水中的速度的=順流速度-水流速度=72÷3-2=22千米/時;
快艇在靜水中的速度=逆流速度+水流速度=72÷3+2=38千米/時。
(2)輪船回來時的速度是靜水中的速度與水速的差,路程是兩港口之間的距離,因而可以求得會來是所用的時間,則C的坐標(biāo)可以求得,然后利用待定系數(shù)法即可求得函數(shù)的解析式。
(3)再求出函數(shù)EF的解析式,根據(jù)返回途中相距12千米,即兩個函數(shù)的函數(shù)值的差是12,則可以列出方程,求得x的值:
輪船返回用時72÷(22-2)=3.6,∴點C的坐標(biāo)為(7.6,0)。
設(shè)線段BC所在直線的解析式為y=kx+b,
∵經(jīng)過點(4,72)(7.6,0),∴,解得:。
∴線段BC所在直線的解析式為:y=-20x+152。
根據(jù)題意得:40x-160-(-20x+152)=12或-20x+152-(40x-160)=12,
解得:x=5或x=5.4。
∵快艇在輪船出發(fā)2小時后從乙港出發(fā),
∴快艇出發(fā)3小時或3.4小時兩船相距12千米。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△A′B′C′(其中A′,B′,C′分別是A,B,C的對應(yīng)點,不寫畫法);
(2)直接寫出A′,B′,C′三點的坐標(biāo):A′( ),B′( ),C′( )
(3)計算△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在折紙活動中,小明制作了一張⊿ABC紙片,點D、E分別是邊AB、AC上,將⊿ABC沿著DE折疊壓平,A與A’重合,若∠A=75°,則∠1+∠2=( )
A. 150° B. 210° C. 105° D. 75°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了預(yù)測本校應(yīng)屆畢業(yè)女生“一分鐘跳繩”項目考試情況,從九年級隨機(jī)抽取部分女生進(jìn)行該項目測試,并以測試數(shù)據(jù)為樣本,繪制出如圖10所示的部分頻數(shù)分布直方圖(從左到右依次分為六個小組,每小組含最小值,不含最大值)和扇形統(tǒng)計圖.根據(jù)統(tǒng)計圖提供的信息解答下列問題:
(1)補(bǔ)全頻數(shù)分布直方圖,并指出這個樣本數(shù)據(jù)的中位數(shù)落在第 小組;
(2)若測試九年級女生“一分鐘跳繩”次數(shù)不低于130次的成績?yōu)閮?yōu)秀,本校九年級女生共有260人,請估計該校九年級女生“一分鐘跳繩”成績?yōu)閮?yōu)秀的人數(shù);
(3)如測試九年級女生“一分鐘跳繩”次數(shù)不低于170次的成績?yōu)闈M分,在這個樣本中,從成績?yōu)閮?yōu)秀的女生中任選一人,她的成績?yōu)闈M分的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 購買江蘇省體育彩票有“中獎”與“不中獎”兩種情況,所以中獎的概率是
B. 國家級射擊運(yùn)動員射靶一次,正中靶心是必然事件
C. 如果在若干次試驗中一個事件發(fā)生的頻率是,那么這個事件發(fā)生的概率一定也是
D. 如果車間生產(chǎn)的零件不合格的概率為 ,那么平均每檢查1000個零件會查到1個次品
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋一枚均勻硬幣正面朝上的概率為,下列說法正確的是( )
A. 連續(xù)拋一枚均勻硬幣2次必有1次正面朝上
B. 連續(xù)拋一枚均勻硬幣10次都可能正面朝上
C. 大量反復(fù)拋一枚均勻硬幣,平均每100次出現(xiàn)下面朝上50次
D. 通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1, 的角平分線BD、CE相交于點P.
(1)如果,求∠BPC的度數(shù);
(2)如圖2,作外角的角平分線交于點Q,試探索、之間的數(shù)量關(guān)系。
(3)如圖3,延長線段BP、QC交于點E,△BQE中,存在一個內(nèi)角等于另一個內(nèi)角的2倍,求的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是9×7的正方形點陣,其水平方向和豎起直方向的兩格點間的長度都為1個單位,以這些點為頂點的三角形稱為格點三角形.請通過畫圖分析、探究回答下列問題:
(1)請在圖中畫出以AB為邊且面積為2的一個網(wǎng)格三角形;
(2)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點M,求以A、B、M為頂點的三角形的面積為2的概率;
(3)任取該網(wǎng)格中能與A、B構(gòu)成三角形的一點M,求以A、B、M為頂點的三角形為直角三角形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABC、∠BCD的平分線BE、CF分別與AD相交于點E、F,BE與CF相交于點G.
(1)求證:BE⊥CF;
(2)若AB=3,BC=5,CF=2,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com