【題目】如圖,正方形、等腰的頂點(diǎn)在對(duì)角線上(點(diǎn)與、不重合),與交于,延長(zhǎng)線與交于點(diǎn),連接.
(1)求證:.
(2)求證:
(3)若,求的值.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】
(1)證出∠ABP=∠CBQ,由SAS證明△ABP≌△CBQ可得結(jié)論;
(2)根據(jù)正方形的性質(zhì)和全等三角形的性質(zhì)得到,∠APF=∠ABP,可證明△APF∽△ABP,再根據(jù)相似三角形的性質(zhì)即可求解;
(3)根據(jù)全等三角形的性質(zhì)得到∠BCQ=∠BAC=45°,可得∠PCQ=90°,根據(jù)三角函數(shù)和已知條件得到,由(2)可得,等量代換可得∠CBQ=∠CPQ即可求解.
(1)∵是正方形,
∴,,
∵是等腰三角形,
∴,,
∴,
∴,
∴;
(2)∵是正方形,
∴,,
∵是等腰三角形,
∴,
∵,
∵,
∴,
∴,
∴,
∴,
∴,
;
(3)由(1)得,,,
∴,
由(2),
∴,
∵,
∴,
在中,
,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如下圖:⊙O的直徑為10,弦AB的長(zhǎng)為8,點(diǎn)P是弦AB上的一個(gè)動(dòng)點(diǎn),使線段OP的長(zhǎng)度為整數(shù)的點(diǎn)P有( )
A.3 個(gè)B.4個(gè)C.5個(gè)D.6個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)P,D分別是BC,AC邊上的點(diǎn),且∠APD=∠B.
(1)求證:△ABP∽△PCD;
(2)若AB=10,BC=12,當(dāng)PD∥AB時(shí),求BP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線經(jīng)過(guò),兩點(diǎn),與x軸的另一個(gè)交點(diǎn)為C,頂點(diǎn)為D,連結(jié)CD.
(1)求該拋物線的表達(dá)式;
(2)點(diǎn)P為該拋物線上一動(dòng)點(diǎn)(與點(diǎn)B、C不重合),設(shè)點(diǎn)P的橫坐標(biāo)為t.
①當(dāng)點(diǎn)P在直線BC的下方運(yùn)動(dòng)時(shí),求的面積的最大值;
②該拋物線上是否存在點(diǎn)P,使得若存在,求出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點(diǎn),與反比例函數(shù)在第一象限內(nèi)的圖象交于點(diǎn),且點(diǎn)的橫坐標(biāo)為.過(guò)點(diǎn)作軸交反比例函數(shù)的圖象于點(diǎn),連接.
(1)求反比例函數(shù)的表達(dá)式.
(2)求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABO的頂點(diǎn)A是雙曲線與直線在第二象限的交點(diǎn),AB⊥軸于B且S△ABO =.
(1)求這兩個(gè)函數(shù)的解析式.
(2)求直線與雙曲線的兩個(gè)交點(diǎn)A,C和直線AC與x軸的交點(diǎn)D的坐標(biāo)和△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,山坡上有一棵樹AB,樹底部B點(diǎn)到山腳C點(diǎn)的距離BC為米,山坡的坡角為30°.小寧在山腳的平地F處測(cè)量這棵樹的高,點(diǎn)C到測(cè)角儀EF的水平距離CF=1米,從E處測(cè)得樹頂部A的仰角為45°,樹底部B的仰角為20°,求樹AB的高度.(參考數(shù)值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明同學(xué)設(shè)計(jì)的“過(guò)圓外一點(diǎn)作圓的切線”的尺規(guī)作圖的過(guò)程.
已知:如圖1,和外的一點(diǎn).
求作:過(guò)點(diǎn)作的切線.
作法:如圖2,
①連接;
②作線段的垂直平分線,直線交于;
③以點(diǎn)為圓心,為半徑作圓,交于點(diǎn)和;
④作直線和.
則,就是所求作的的切線.
根據(jù)上述作圖過(guò)程,回答問(wèn)題:
(1)用直尺和圓規(guī),補(bǔ)全圖2中的圖形;
(2)完成下面的證明:
證明:連接,,
∵由作圖可知是的直徑,
∴(______)(填依據(jù)),
∴,,
又∵和是的半徑,
∴,就是的切線(______)(填依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,和都是等邊三角形,且點(diǎn)A、C、E在同一直線上,與、分別交于點(diǎn)F、M,與交于點(diǎn)N.下列結(jié)論正確的是_______(寫出所有正確結(jié)論的序號(hào)).
①;②;③;④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com