【題目】如圖,CD是⊙O的切線,點(diǎn)C在直徑AB的延長線上.
(1)求證:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的長.
【答案】(1)證明見解析;(2)CD=2.
【解析】(1)連接OD,由OB=OD可得出∠OBD=∠ODB,根據(jù)切線的性質(zhì)及直徑所對的圓周角等于180°,利用等角的余角相等,即可證出∠CAD=∠BDC;
(2)由∠C=∠C、∠CAD=∠CDB可得出△CDB∽△CAD,根據(jù)相似三角形的性質(zhì)結(jié)合BD=AD、AC=3,即可求出CD的長.
詳(1)證明:連接OD,如圖所示.
∵OB=OD,
∴∠OBD=∠ODB.
∵CD是⊙O的切線,OD是⊙O的半徑,
∴∠ODB+∠BDC=90°.
∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠OBD+∠CAD=90°,
∴∠CAD=∠BDC.
(2)∵∠C=∠C,∠CAD=∠CDB,
∴△CDB∽△CAD,
∴.
∵BD=AD,
∴,
∴,
又∵AC=3,
∴CD=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,是高,點(diǎn)是上一點(diǎn),,,分別是上的點(diǎn),且.
(1)求證:.
(2)探索和的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)x(2x﹣5)=4x﹣10
(2)2x2+5x+1=0
(3)x2+5x+7=3x+6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的分式方程①和一元二次方程②中,m為常數(shù),方程①的根為非負(fù)數(shù).
(1)求m的取值范圍;
(2)若方程②有兩個整數(shù)根x1、x2,且m為整數(shù),求方程②的整數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的周長為19,點(diǎn)D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,∠ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長度為( 。
A. B. 2 C. D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖中的陰影部分是某水庫大壩橫截面,小明站在大壩上的A處看到一棵大樹CD的影子剛好落在壩底的B處(點(diǎn)A與大樹及其影子在同一平面內(nèi)),此時太陽光與地面的夾角為60°,在A處測得樹頂D的俯角為15°,如圖所示,已知斜坡AB的坡度i=:1,若大樹CD的高為8米,則大壩的高為( )米(結(jié)果精確到1米,參考數(shù)據(jù)≈1.414 ≈1.732)
A. 18 B. 19 C. 20 D. 21
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖所示,某公路一側(cè)有A、B兩個送奶站,C為公路上一供奶站,CA和CB為供奶路線,現(xiàn)已測得AC=8km,BC=15km,AB=17km,∠1=30°,若有一人從C處出發(fā),沿公路邊向右行走,速度為2.5km/h,問:多長時間后這個人距B送奶站最近?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AFD=∠1,AC∥DE.
(1)試說明:DF∥BC;
(2)若∠1=68°,DF平分∠ADE,求∠B的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com