【題目】閱讀下列材料,解決提出的問題:
最短路徑問題:如圖(1),點A,B分別是直線l異側(cè)的兩個點,如何在直線l上找到一個點C,使得點C到點A,點B的距離和最短?我們只需連接AB,與直線l相交于一點,可知這個交點即為所求.
如圖(2),如果點A,B分別是直線l同側(cè)的兩個點,如何在l上找到一個點C,使得這個點到點A、點B的距離和最短?我們可以利用軸對稱的性質(zhì),作出點B關(guān)于的對稱點B,這時對于直線l上的任一點C,都保持CB=CB,從而把問題(2)變?yōu)閱栴}(1).因此,線段AB與直線l的交點C的位置即為所求.
為了說明點C的位置即為所求,我們不妨在直線上另外任取一點C′,連接AC′,BC′,B′C′.因為AB′≤AC′+C′B′,∴AC+CB<AC'+C′B,即AC+BC最。
任務:
數(shù)學思考
(1)材料中劃線部分的依據(jù)是 .
(2)材料中解決圖(2)所示問題體現(xiàn)的數(shù)學思想是 .(填字母代號即可)
A.轉(zhuǎn)化思想
B.分類討論思想
C.整體思想
遷移應用
(3)如圖,在Rt△ABC中,∠C=90°,∠BAC=15°,點P為C邊上的動點,點D為AB邊上的動點,若AB=8cm,則BP+DP的最小值為 cm.
【答案】(1)兩點之間線段最短或三角形的兩邊之和大于第三邊;(2)A;(3)4
【解析】
(1)依據(jù)是兩點之間線段最短或三角形的兩邊之和大于第三邊;
(2)材料中解決圖(2)所示問題體現(xiàn)的數(shù)學思想是轉(zhuǎn)化的思想;
(3)如圖(3)中,作點B關(guān)于點C的對稱點B′,連接AB′.作BH⊥AB′于H.作點D關(guān)于AC的對稱點D′,則PD=PD′,推出PB+PD=PB+PD′,根據(jù)垂線段最短可知,當點D′與H重合,B,P,D′共線時,PB+PD的最小值=線段BH的長;
(1)材料中劃線部分的依據(jù)是兩點之間線段最短或三角形的兩邊之和大于第三邊;
故答案為:兩點之間線段最短或三角形的兩邊之和大于第三邊;
(2)材料中解決圖(2)所示問題體現(xiàn)的數(shù)學思想是轉(zhuǎn)化的思想,
故答案為A.
(3)如圖(3)中,作點B關(guān)于點C的對稱點B′,連接AB′.作BH⊥AB′于H.
作點D關(guān)于AC的對稱點D′,則PD=PD′,
∴PB+PD=PB+PD′,
根據(jù)垂線段最短可知,當點D′與H重合,B,P,D′共線時,PB+PD的最小值=線段BH的長,
∵BC=CB′,AC⊥BB′,
∴AB=AB′,
∴∠BAC=∠CAB′=15°,
∴∠BAH=30°,
在Rt△ABH中,∵AB=8cm,∠BAH=30°,
∴BH=AB=4cm,
∴PB+PD的最小值為4cm.
故答案為4.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點A落在點A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( 。
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學開展菜市場菜價調(diào)查活動,以鍛煉同學們的生活能力.調(diào)查一共連續(xù)7天,每天調(diào)查3次,第一次8:00由各班的A小組調(diào)查,第二次13:00由B小組調(diào)查,第三次17:00由C小組調(diào)查.調(diào)查完后分析當天的菜價波動情況,七天調(diào)查結(jié)束后整理數(shù)據(jù),就得出了菜價最便宜的某一時段.下面是同學們的一些調(diào)查情況,請你幫忙分析數(shù)據(jù): 第1天菜價調(diào)查情況(單位:元/千克) 第2﹣5天平均菜價(單位:元/千克)
(1)根據(jù)“第2﹣5天平均菜價”圖來分析:哪種蔬果價格最便宜?
(2)從第一天的調(diào)查情況來看,哪種蔬果的價格波動最小?請通過計算說明.
(3)計算蘋果、白菜、土豆在1﹣5天的平均菜價.
(4)根據(jù)上面兩個圖來分析:在3﹣5天中的哪一天的哪一時段購買蘋果最省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過點A(﹣1,0),B(5,﹣5),C(6,0)
(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點P使四邊形PACB的面積最大?若存在,請求出點P的坐標;若不存在,請說明理由.
(3)若點Q為拋物線的對稱軸上的一個動點,試指出使△QAB為等腰三角形的點Q一共有幾個?并請你求出其中一個點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】目前節(jié)能燈在城市已基本普及,今年山東省面向縣級及農(nóng)村地區(qū)推廣,為響應號召,某商場計劃購進甲,乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進價、售價如下表:
(1)如何進貨,進貨款恰好為46000元?
(2)設(shè)商場購進甲種節(jié)能燈x只,求出商場銷售完節(jié)能燈時總利潤w與購進甲種節(jié)能燈x之間的函數(shù)關(guān)系式;
(3)如何進貨,商場銷售完節(jié)能燈時獲利最多且不超過進貨價的30%,此時利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標平面內(nèi)有兩點、,且、兩點之間的距離等于(為大于0的已知數(shù)),在不計算的數(shù)值條件下,完成下列兩題:
(1)以學過的知識用一句話說出的理由;
(2)在軸上是否存在點,使是等腰三角形,如果存在,請寫出點的坐標,并求的面積;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】任何一個正整數(shù)n都可以進行這樣的分解:n=s×t(s,t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:、例如18可以分解成1×18,2×9,3×6這三種,這時就有.給出下列關(guān)于F(n)的說法:(1);(2);(3)F(27)=3;(4)若n是一個整數(shù)的平方,則F(n)=1.其中正確說法的有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周長為36 cm,點P從點A開始沿AB邊向B點以每秒1cm的速度移動;點Q從點B沿BC邊向點C以每秒2cm的速度移動,如果同時出發(fā),則過3s時,△BPQ的面積為____cm2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題
某中學七年級兩個班共105人,要去市科技博物館進行社會大課堂活動,老師指派小明到網(wǎng)上查閱票價信息,小明查得票價如下表:其中七班不足50人,經(jīng)估算,如果兩個班都以班為單位購票,一共應付1140元.
購票張數(shù)張 | 每張票的價格元 |
12 | |
10 | |
100以上 | a |
(1)兩個班各有多少學生?
(2)如果兩個班聯(lián)合起來,作為一個團體購票,可以省300元,請求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com