在同一坐標(biāo)系中,畫(huà)出函數(shù)y=2x,y=-2x的圖像.

答案:
解析:

  解:列表

  兩個(gè)函數(shù)的圖像如圖所示.(掌握畫(huà)函數(shù)圖像的一般步驟)

  思路分析:因?yàn)楹瘮?shù)y=2x,y=-2x都是正比例函數(shù),所以它們的圖像都是直線,故可用兩點(diǎn)確定一條直線的方法畫(huà)這兩個(gè)函數(shù)的圖像.畫(huà)函數(shù)y=2x的圖像,取(0,0)、(1,2)較簡(jiǎn)便,畫(huà)函數(shù)y=-2x的圖像,取(0,0)、(1,-2)較簡(jiǎn)便.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在同一坐標(biāo)系中,畫(huà)出函數(shù)y=kx+b與y=
k
x
(k>0,b>0)的圖象,則下列說(shuō)法正確的是(  )
A、這兩個(gè)函數(shù)的圖象在第一、三象限有交點(diǎn)
B、這兩個(gè)函數(shù)的圖象在第二、四象限有交點(diǎn)
C、這兩個(gè)函數(shù)的圖象無(wú)論在哪個(gè)象限都不可能有交點(diǎn)
D、這兩個(gè)函數(shù)的圖象是否有交點(diǎn)無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

一艘巡邏艇與一艘貨輪同時(shí)從甲港駛往乙港,巡邏艇不停地在甲、乙兩港間巡邏.設(shè)貨輪精英家教網(wǎng)行駛的時(shí)間為x(h),兩船之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系.
根據(jù)圖象進(jìn)行以下研究:
信息讀。
(1)兩船首次相遇需要
 
小時(shí);
(2)請(qǐng)解釋圖中點(diǎn)A的實(shí)際意義;
圖象理解:
(3)求巡邏艇和貨輪的速度以及甲乙兩港間的距離;
(4)求線段BC所表示的y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
問(wèn)題解決:
(5)若在貨輪從甲港出發(fā)時(shí),第二艘巡邏艇也從乙港同時(shí)出發(fā)駛往甲港(到目的地后不再返回),速度與第一艘巡邏艇相同.在同一坐標(biāo)系中,畫(huà)出第二艘巡邏艇與貨輪之間的距離y(km)與貨輪行駛的時(shí)間x(h)之間的函數(shù)圖象;用函數(shù)關(guān)系式表示函數(shù)圖象上的相應(yīng)部分,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

正比例函數(shù)y=kx和反比例函數(shù)y=
kx
的圖象相交于A,B兩點(diǎn),已知點(diǎn)A的橫坐標(biāo)為1,縱坐標(biāo)為3.精英家教網(wǎng)
(1)寫(xiě)出這兩個(gè)函數(shù)的表達(dá)式;
(2)求B點(diǎn)的坐標(biāo);
(3)在同一坐標(biāo)系中,畫(huà)出這兩個(gè)函數(shù)的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=
6x
的圖象相交于A、B兩點(diǎn),點(diǎn)A的橫坐標(biāo)為3,點(diǎn)B的縱坐標(biāo)為-3.
(1)求一次函數(shù)的解析式;
(2)在同一坐標(biāo)系中,畫(huà)出一次函數(shù)與反比例函數(shù)的圖象.
(3)觀察圖象:寫(xiě)出當(dāng)x為何值時(shí),一次函數(shù)值小于反比例函數(shù)值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在同一坐標(biāo)系中,畫(huà)出函數(shù)y=-x2和y=-x2+1的圖象,根據(jù)圖象回答:
(1)拋物線y=-x2+1經(jīng)過(guò)怎樣的平移得到拋物線y=-x2
(2)對(duì)于函數(shù)y=-x2+1:
①當(dāng)x為何值時(shí),y隨x的增大而減?
②當(dāng)x為何值時(shí),函數(shù)y有最大值?最大值是多少?
③求y=-x2+1的圖象與x軸、y軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案