【題目】如圖,△ABC是等邊三角形,△ABD是等腰直角三角形,∠BAD=90°,AEBD于點E,連CD分別交AE,AB于點F,G,過點AAHCDBD于點H.則下列結論:①∠ADC=15°;AF=AG;AH=DF;④△AFG∽△CBG;AF=(﹣1)EF.其中正確結論的個數(shù)為( 。

A. 5 B. 4 C. 3 D. 2

【答案】B

【解析】

根據(jù)ABC為等邊三角形,ABD為等腰直角三角形的性質,以及頂角∠CAD=150°,即可判斷,②求出的度數(shù)即可判斷. ③證明

ADF≌△BAH即可判斷,④根據(jù)兩組角對應相等的兩個三角形相似即可判斷.

⑤設,則根據(jù)相似三角形的判定與性質即可得出結論.

∵△ABC為等邊三角形,ABD為等腰直角三角形,

∴∠BAC=60°、

是等腰三角形,且頂角∠CAD=150°,

∴∠ADC=15°,故①正確;

AEBD,即∠AED=90°,

故②錯誤;

AHCD的交點為P,

且∠AFG=60°知∠FAP=30°,

ADFBAH中,

∴△ADF≌△BAH(ASA),

,故③正確;

,故④正確;

中,設,則

∵△ADF≌△BAH,

ABE中,∵

整理,得:

x≠0 故⑤正確;

故選:B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,AB=AC,BAC=90°,AE是過A點的一條直線,且B,CAE的異側,BDAED,CEAEE.

(1)ABDCAE全等嗎?BDDE+CE相等嗎?請說明理由。

(2)如圖2,若直線AE繞點A旋轉到圖②所示的位置(BD<CE)時,其余條件不變,則BDDE、CE的關系如何?請說明理由

(3)如圖3,若直線AE繞點A旋轉到圖③所示的位置(BD>CE)時,其余條件不變,則BDDE、CE的關系如何?

(4)根據(jù)以上的討論,請用簡潔的語言表達BDDE、CE的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖的中,,且上一點.今打算在上找一點,在上找一點,使得全等,以下是甲、乙兩人的作法:

(甲)連接,作的中垂線分別交、點、點,則、兩點即為所求

(乙)過作與平行的直線交點,過作與平行的直線交點,則、兩點即為所求

對于甲、乙兩人的作法,下列判斷何者正確?(  )

A. 兩人皆正確B. 兩人皆錯誤

C. 甲正確,乙錯誤D. 甲錯誤,乙正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點DBC的中點.

(1)如圖①,若點E、F分別為AB、AC上的點,且DEDF,求證:BE=AF;

(2)若點E、F分別為AB、CA延長線上的點,且DEDF,那么BE=AF嗎?請利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知二次函數(shù)y=k(x﹣ax﹣b),其中a≠b.

(1)若此二次函數(shù)圖象經(jīng)過點(0,k),試求a,b滿足的關系式.

(2)若此二次函數(shù)和函數(shù)y=x2﹣2x的圖象關于直線x=2對稱,求該函數(shù)的表達式.

(3)若a+b=4,且當0≤x≤3時,有1≤y≤4,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠BAC90°,ABAC.點D從點B出發(fā)沿射線BC移動,以AD為邊在AB的右側作ADE,且∠DAE90°,ADAE.連接CE

1)如圖1,若點DBC邊上,則∠BCE  °;

2)如圖2,若點DBC的延長線上運動.

①∠BCE的度數(shù)是否發(fā)生變化?請說明理由;

②若BC3CD6,則ADE的面積為 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請利用直尺完成下列問題

1)如圖(1)示,利用網(wǎng)格畫圖:

①在BC上找一點P,使得PABAC的距離相等;

②在射線AP上找一點Q,使QBQC

2)如圖(2)示,點A,B,C都在方格紙的格點上.請你再找一個格點D,使點A,BC,D組成一個軸對稱圖形,請在圖中標出滿足條件的所有點D的位置.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC△ECD都是等邊三角形,B、CD三點在一條直線上,ADBE相交于點O,ADCE相交于點F,ACBE相交于點G

1△BCE△ACD全等嗎?請說明理由.

2)求∠BOD度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CD垂直平分OA,垂足為點M,連接并延長CO交⊙O于點E,分別連接DE,BE,DB,其中∠EDB=30°,CDE的平分線DNCE于點G,交⊙O于點N,延長CE至點F,使FG=FD.

(1)求證:DF是⊙O的切線;

(2)若⊙O半徑r8,求線段DB,BE與劣弧DE所圍成的陰影部分的面積.

查看答案和解析>>

同步練習冊答案