【題目】在我校舉行的小科技創(chuàng)新發(fā)明比賽中,共有60人獲獎(jiǎng),組委會(huì)原計(jì)劃按照一等獎(jiǎng)5人,二等獎(jiǎng)15人,三等獎(jiǎng)40人進(jìn)行獎(jiǎng)勵(lì).后來(lái)經(jīng)學(xué)校研究決定,在該項(xiàng)獎(jiǎng)勵(lì)總獎(jiǎng)金不變的情況下,各等級(jí)獲獎(jiǎng)人數(shù)實(shí)際調(diào)整為:一等獎(jiǎng)10人,二等獎(jiǎng)20人,三等獎(jiǎng)30人,調(diào)整后一等獎(jiǎng)每人獎(jiǎng)金降低80元,二等獎(jiǎng)每人獎(jiǎng)金降低50元,三等獎(jiǎng)每人獎(jiǎng)金降低30元,調(diào)整前二等獎(jiǎng)每人獎(jiǎng)金比三等獎(jiǎng)每人獎(jiǎng)金多70元,則調(diào)整后一等獎(jiǎng)每人獎(jiǎng)金比二等獎(jiǎng)每人獎(jiǎng)金多____元.
【答案】370
【解析】
設(shè)原來(lái)一等獎(jiǎng)為x元,二等獎(jiǎng)為y元,三等獎(jiǎng)為z元,則調(diào)整后一等獎(jiǎng)為(x-80)元,二等獎(jiǎng)為(y-50)元,三等獎(jiǎng)為(z-30)元.構(gòu)建方程組,求出x-y即可解決問(wèn)題;
解:設(shè)原來(lái)一等獎(jiǎng)為x元,二等獎(jiǎng)為y元,三等獎(jiǎng)為z元,則調(diào)整后一等獎(jiǎng)為(x-80)元,二等獎(jiǎng)為(y-50)元,三等獎(jiǎng)為(z-30)元.
由題意:,
整理得:,
∴,
∴調(diào)整后一等獎(jiǎng)每人獎(jiǎng)金比二等獎(jiǎng)每人獎(jiǎng)金多:
,
故答案為:370.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,∠CAB=∠DAE,AC=AD,增加下列條件:①AB=AE; ②BC=ED; ③∠C=∠D;④∠B=∠E;⑤∠1=∠2.其中能使△ABC≌△AED的條件有( )
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,點(diǎn)C在AOB的一邊OA上,過(guò)點(diǎn)C的直線DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數(shù);
(2)求證:CG平分OCD;
(3)當(dāng)O為多少度時(shí),CD平分OCF,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:k為正數(shù),直線l1:y=kx+k-1與直線l2:y=(k+1)x+k及x軸圍成的三角形的面積為Sk,則S1+S2+S3+....+S2016的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圖中的小方格都是邊長(zhǎng)為1的正方形,與 是以點(diǎn)O為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.
畫(huà)出位似中心點(diǎn)O;
直接寫(xiě)出與的位似比;
以位似中心O為坐標(biāo)原點(diǎn),以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,并直接寫(xiě)出各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在 RtABC 中,ACB 90,點(diǎn)O在 BC 上,經(jīng)過(guò)點(diǎn) 的⊙ O 與 BC ,AB 分別相交于點(diǎn) D ,E 連接 CE , CE CA .
(1)求證: CE 是⊙ O 的切線;
(2)若 tan ABC ,BD 4,求CD 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】三角形內(nèi)角和定理告訴我們:三角形三個(gè)內(nèi)角的和等于180°.如何證明這個(gè)定理呢?
我們知道,平角是180°,要證明這個(gè)定理就是把三角形的三個(gè)內(nèi)角轉(zhuǎn)移到一個(gè)平角中去,請(qǐng)根據(jù)如下條件,證明定理.
(定理證明)
已知:△ABC(如圖①).
求證:∠A+∠B+∠C=180°.
(定理推論)如圖②,在△ABC中,有∠A+∠B+∠ACB=180°,點(diǎn)D是BC延長(zhǎng)線上一點(diǎn),由平角的定義可得∠ACD+∠ACB=180°,所以∠ACD= .從而得到三角形內(nèi)角和定理的推論:三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角的和.
(初步運(yùn)用)如圖③,點(diǎn)D、E分別是△ABC的邊AB、AC延長(zhǎng)線上一點(diǎn).
(1)若∠A=80°,∠DBC=150°,則∠ACB= ;
(2)若∠A=80°,則∠DBC+∠ECB= .
(拓展延伸)如圖④,點(diǎn)D、E分別是四邊形ABPC的邊AB、AC延長(zhǎng)線上一點(diǎn).
(1)若∠A=80°,∠P=150°,則∠DBP+∠ECP= ;
(2)分別作∠DBP和∠ECP的平分線,交于點(diǎn)O,如圖⑤,若∠O=50°,則∠A和∠P的數(shù)量關(guān)系為 ;
(3)分別作∠DBP和∠ECP的平分線BM、CN,如圖⑥,若∠A=∠P,求證:BM∥CN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,BE=CE,MN=1,線段MN的端點(diǎn)M,N分別在CD,AD上滑動(dòng),當(dāng)DM=______________時(shí),△ABE與以D,M,N為頂點(diǎn)的三角形相似。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校在“你最喜愛(ài)的課外活動(dòng)項(xiàng)目”調(diào)查中,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生分別選了一個(gè)活動(dòng)項(xiàng)目),并根據(jù)調(diào)查結(jié)果繪制了如圖所示的扇形統(tǒng)計(jì)圖.已知“最喜愛(ài)機(jī)器人”的人數(shù)比“最喜愛(ài)3D打印”的人數(shù)少5人,則被調(diào)查的學(xué)生總?cè)藬?shù)為( )
A.50人B.40人C.30人D.25人
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com