【題目】如圖,在平面直角坐標系中,直線l:y=kx+h與x軸相交于點A(﹣1,0),與y軸相交于點C,與拋物線y=﹣x2+bx+3的一交點為點D,拋物線過x軸上的AB兩點,且CD=4AC.
(1)求直線l和拋物線的解析式;
(2)點E是直線l上方拋物線上的一動點,求當△ADE面積最大時,點E的坐標;
(3)設P是拋物線對稱軸上的一點,點Q在拋物線上,四邊形APDQ能否為矩形?若能,請直接寫出點P的坐標;若不能,請說明理由.
【答案】(1)直線l的解析式為y=﹣x﹣1.(2)E(,).(3)不存在.
【解析】分析:(1)把相關點的坐標代入解析式即可求解;
(2)過點E作EM⊥x軸,交AD于點M,設點E(m,-m2+2m+3),則M(m,-m-1),根據(jù)題意得出三角形面積關于m的二次函數(shù),分析其最值即可;
(3)先根據(jù)題意分析當四邊形APDQ為平行四邊形時,確定點P,Q的坐標,在運用勾股定理的逆定理分析是否垂直即可.
詳解:(1)將A(-1,0)代入y=-x2+bx+3,得b=2,
所以拋物線的解析式為y=-x2+2x+3,
過點D作DF⊥x軸于點F,如圖1
易證△AOC∽△AFD,
∴,
∵CD=4AC,
∴,
∴點D橫坐標為4,
把x=4代入y=-x2+2x+3,得y=-5,
∴D(4,-5),
把x=4,y=-5;x=-1,y=0代入y=kx+h,
解得,k=-1,h=-1,
∴直線l的解析式為y=-x-1.
(2)過點E作EM⊥x軸,交AD于點M,如圖2
設點E(m,-m2+2m+3),則M(m,-m-1),
∴EM=-m2+2m+3-(-m-1)═-m2+3m+4,
∴S△ADE=×5(-m2+3m+4)=m2+m+10,
當m=時,△ADE的面積最大,
此時,E(,).
(3)不存在
理由如下:
∵拋物線的對稱軸為直線x=1,
設P(1,m),
①若AD是平行四邊形ADPQ的一條邊,如圖3
則易得Q(-4,-21),
m=-21-5=-26,則P(1,-26),
此時AQ2=32+212=450,QP2=52+52=50,AP2=22+262=680,
∴AQ2+QP2≠AP2,
∴∠AQP≠90°,
此時平行四邊形ADPQ不是矩形;
②若AD是平行四邊形APDQ的對角線,如圖4
則易得Q(2,3),
m=-5a-3=-8,則P(1,-8),
PQ2=12+112=122,PD2=32+32=18QD2=22+82=68,
∴PD2+QD2≠PQ2,
∴∠PDQ≠90°,
此時平行四邊形ADPQ不是矩形,
綜上所述,四邊形APDQ不能為矩形.
科目:初中數(shù)學 來源: 題型:
【題目】小明參加某個智力競答節(jié)目,答對最后兩道單選題就順利通關.第一道單選題有3個選項,第二道單選題有4個選項,這兩道題小明都不會,不過小明還有一個“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個錯誤選項).
(1)如果小明第一題不使用“求助”,那么小明答對第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請用樹狀圖或者列表來分析小明順利通關的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下列填空:
(1)如圖,為直角,,且平分平分,求的度數(shù).
(2)如圖,,且平分平分.直接寫出的度數(shù).
解:(1)因為,所以 ①
因為平分,所以 ② ③
因為平分,所以 ④ ⑤
所以 ⑥
(2) ⑦
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖, AF平分∠BAC,BC⊥AF, 垂足為E,點D與點A關于點E對稱,PB分別與線段CF,AF相交于P,M.
(1)求證:AB=CD;
(2)若∠BAC=2∠MPC,請你判斷∠F與∠MCD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察猜想:
在Rt△ABC中,∠BAC=90°,AB=AC,點D在邊BC上,連接AD,把△ABD繞點A逆時針旋轉90°,點D落在點E處,如圖①所示,則線段CE和線段BD的數(shù)量關系是 ,位置關系是 .
(2)探究證明:
在(1)的條件下,若點D在線段BC的延長線上,請判斷(1)中結論是還成立嗎?請在圖②中畫出圖形,并證明你的判斷.
(3)拓展延伸:
如圖③,∠BAC≠90°,若AB≠AC,∠ACB=45°,AC=,其他條件不變,過點D作DF⊥AD交CE于點F,請直接寫出線段CF長度的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把下列各數(shù)填入相應的集合中:
10,,3.14, , 0.6,0, 75%, (5),.
正數(shù)集合:{ …};
負數(shù)集合:{ …};
整數(shù)集合:{ …};
有理數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點A(a,0)和B(b,0),交y軸于點C,拋物線的頂點為D,下列四個判斷:①當x>0時,y>0;②若a=-1,則b=4;③拋物線上有兩點P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+x2>2,則y1> y2;④點C關于拋物線對稱軸的對稱點為E,點G,F分別在x軸和y軸上,當m=2時,四邊形EDFG周長的最小值為.其中正確判斷的序號是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BE⊥AC于點F,交邊AD于點E,連結DF,若點E為AD的中點,則DF的長為__________ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com