【題目】為了解市民對全市創(chuàng)文工作的滿意程度,婁星區(qū)某中學數(shù)學興趣小組在婁底城區(qū)范圍內(nèi)進行了抽樣調(diào)查,將調(diào)查結果分為非常滿意,滿意,一般,不滿意四類,回收、整理好全部問卷后,繪制了兩幅不完整的統(tǒng)計圖1、圖2,結合圖中信息,回答:
(1)此次共調(diào)查了多少名市民?
(2)將兩幅統(tǒng)計圖中不完整的部分補充完整;
(3)若我市城區(qū)共有480000人口,請估算我市對創(chuàng)文工作“非常滿意和滿意”的市民人數(shù).
【答案】(1)200;(2)詳見解析;(3)384000
【解析】
(1)從兩個統(tǒng)計圖中可得到“非常滿意”的有90人,占調(diào)查人數(shù)的,可求出調(diào)查的人數(shù);
(2)求出“滿意人數(shù)”,即可補全條形統(tǒng)計圖;
(3)樣本估計總體,樣本中“非常滿意和滿意”的占,因此估計480000人的是“非常滿意和滿意”的人數(shù).
解:(1)(人,
答:此次共調(diào)查了200名市民.
(2)(人;補全條形統(tǒng)計圖如圖所示:
(3)(人,
答:我市對創(chuàng)文工作“非常滿意和滿意”的市民人數(shù)約為384000人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=54°,以AB為直徑的⊙O分別交AC、BC于點D、E,過點B作直線BF,交AC的延長線于點F.
(1)求證:BE=CE;
(2)若AB=6,求弧DE的長;
(3)當∠F的度數(shù)是多少時,BF與⊙O相切,證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將108個蘋果放到一些盒子中,盒子有三種規(guī)格:一種可以裝10個蘋果,一種可以裝9個蘋果,一種可以裝6個蘋果,要求每種規(guī)格都要有且每個盒子均恰好裝滿,則不同的裝法總數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校學生會準備調(diào)查六年級學生參加“武術類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).
(1)確定調(diào)查方式時,甲同學說:“我到六年級(1)班去調(diào)查全體同學”;乙同學說:“放學時我到校門口隨機調(diào)查部分同學”;丙同學說:“我到六年級每個班隨機調(diào)查一定數(shù)量的同學”.請指出哪位同學的調(diào)查方式最合理.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
武術類 | 0.25 | |
書畫類 | 20 | 0.20 |
棋牌類 | 15 | b |
器樂類 | ||
合計 | a | 1.00 |
(2)他們采用了最為合理的調(diào)查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.
請你根據(jù)以上圖表提供的信息解答下列問題:
①a=_____,b=_____;
②在扇形統(tǒng)計圖中,器樂類所對應扇形的圓心角的度數(shù)是_____;
③若該校六年級有學生560人,請你估計大約有多少學生參加武術類校本課程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在不透明的布袋中裝有1個紅球,2個白球,它們除顏色外其余完全相同.
(1)從袋中任意摸出兩個球,試用樹狀圖或表格列出所有等可能的結果,并求摸出的球恰好是兩個白球的概率;
(2)若在布袋中再添加a個白球,充分攪勻,從中摸出一個球,使摸到紅球的概率為,試求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為正方形ABCD的中心,BE平分∠DBC交DC于點E,延長BC到點F,使FC=EC,連結DF交BE的延長線于點H,連結OH交DC于點G,連結HC.則以下四個結論中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°。正確結論的個數(shù)為( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南洞庭大橋是南益高速公路上的重要橋梁,小芳同學在校外實踐活動中對此開展測量活動.如圖,在橋外一點A測得大橋主架與水面的交匯點C的俯角為α,大橋主架的頂端D的仰角為β,已知測量點與大橋主架的水平距離AB=a,則此時大橋主架頂端離水面的高CD為( )
A.asinα+asinβB.acosα+acosβC.atanα+atanβD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:如圖①,直線l1∥l2,點A、B在直線l1上,點C、D在直線l2上,記△ABC的面積為S1,△ABD的面積為S2,求證:S1=S2.
拓展:如圖②,E為線段AB延長線上一點,BE>AB,正方形ABCD、正方形BEFG均在直線AB同側,求證:△DEG的面積是正方形BEFG面積的一半.
應用:如圖③,在一條直線上依次有點A、B、C、D,正方形ABIJ、正方形BCGH、正方形CDEF均在直線AB同側,且點F、H分別是邊CG、BI的中點,若正方形CDEF的面積為l,則△AGI的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某次臺風來襲時,垂直于地面的大樹AB被刮傾斜30°后,折斷倒在地上,樹的頂部恰好落在地面上點D處,大樹被折斷部分和地面所成的角∠ADC=45°,AD=4米,求這棵大樹AB原來的高度是多少米?(結果精確到個位,參考數(shù)據(jù):,,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com