【題目】如圖,已知一次函數(shù)y1=k1x+b的圖象與x軸,y軸分別交于A,B兩點,與反比例函數(shù)y2=的圖象分別交于C,D兩點,且D(2,-3),OA=2.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)請直接寫出不等式k1x+b-≥0的解集;
(3)動點P(0,m)在y軸上運(yùn)動,當(dāng)|PC-PD|的值最大時,請寫出點P的坐標(biāo).
【答案】(1) y2=-;y=-x-;(2) x≤-4或0<x≤2;(3)當(dāng)|PC-PD|的值最大時,點P的坐標(biāo)為(0,-).
【解析】
(1)把點D的坐標(biāo)代入反比例函數(shù),利用待定系數(shù)法即可求得反比例函數(shù)的解析式,作DE⊥x軸于E,根據(jù)題意求得A的坐標(biāo),然后利用待定系數(shù)法求得一次函數(shù)的解析式;
(2)根據(jù)圖象即可求得k1x+b-≥0時,自變量x的取值范圍;
(3)作C(-4,)關(guān)于y軸的對稱點C'(4,),延長C'D交y軸于點P,由C'和D的坐標(biāo)可得,直線C'D為y=x-,進(jìn)而得到點P的坐標(biāo).
(1)∵點D(2,-3)在反比例函數(shù)y2=的圖象上,
∴k2=2×(-3)=-6,
∴y2=;
如圖,作DE⊥x軸于E
∵OA=2
∴A(-2,0),
∵A(-2,0),D(2,-3)在y1=k1x+b的圖象上,
,
解得k1=-,b=-,
∴y=-x-;
(2)由圖可得,當(dāng)k1x+b-≥0時,x≤-4或0<x≤2.
(3)由,解得或,
∴C(-4,),
作C(-4,)關(guān)于y軸的對稱點C'(4,),延長C'D交y軸于點P,
∴由C'和D的坐標(biāo)可得,直線C'D為y=x-,
令x=0,則y=-,
∴當(dāng)|PC-PD|的值最大時,點P的坐標(biāo)為(0,-).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是直經(jīng),D是的中點,DE⊥AC交AC的延長線于E,⊙O的切線BF交AD的延長線于點F.
(1)求證:DE是⊙O的切線.
(2)試探究AE,AD,AB三者之間的等量關(guān)系.
(3)若DE=3,⊙O的半徑為5,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實黨的“精準(zhǔn)扶貧”政策,A、B兩城決定向C,D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費用分別為20元/噸和25元/噸:從B城往C,D兩鄉(xiāng)運(yùn)肥料的費用分別為15元/噸和24元/噸,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費為y元,求y與x的函數(shù)關(guān)系式.
(3)怎樣調(diào)運(yùn)才能使總運(yùn)費最少?并求最少運(yùn)費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,,三點在上,直徑平分,過點作交弦于點,在的延長線上取一點,使得.
(1)求證:是的切線;
(2)連接AF交DE于點M,若AD=4,DE=5,求DM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.
(1)求證:四邊形AOCP是平行四邊形;
(2)填空:①當(dāng)∠ABP= 時,四邊形AOCP是菱形;
②連接BP,當(dāng)∠ABP= 時,PC是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某中心廣場燈柱AB被鋼纜CD固定,已知CB=5米,且sin∠DCB=.
(1)求鋼纜CD的長度。
(2)若AD=2米,燈的頂端E距離A處1.6米,且∠EAB=120°,則燈的頂端E距離地面多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某數(shù)學(xué)興趣小組在活動課上測量學(xué)校旗桿的高度.已知小亮站著測量,眼睛與地面的距離(AB)是1.7米,看旗桿頂部E的仰角為30°;小敏蹲著測量,眼睛與地面的距離(CD)是0.7米,看旗桿頂部E的仰角為45°.兩人相距5米且位于旗桿同側(cè)(點B、D、F在同一直線上).
(1)求小敏到旗桿的距離DF.(結(jié)果保留根號)
(2)求旗桿EF的高度.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.4,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:與x軸交于點B1,以OB1為邊長作等邊△A1OB1,過點A1作A1B2平行于x軸,交直線l于點B2,以A1B2為邊長作等邊△A2A1B2,過點A2作A2B3平行于x軸,交直線l于點B3,以A2B3為邊長作等邊△A3A2B3,…,則點A2 018的橫坐標(biāo)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AC,BD為對角線,BC=3,BC邊上的高為2,則陰影部分的面積為( )
A. 3B. 4C. 6D. 12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com