如圖,已知AB∥CD,∠C=35°,BC平分∠ABE,則∠ABE的度數(shù)是   
70°
解:∵AB∥CD,
∴∠C=∠ABC,
∵∠C=35°,
∴∠ABC=35°,
∵BC平分∠ABE,
∴∠ABE=2∠ABC,
即:∠ABE=70°
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點,點D與點O重合,DF⊥AC于點M,DE⊥BC于點N,試判斷線段OM與ON的數(shù)量關(guān)系,并說明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線,
∵CA=CB,∴CO是∠ACB的角平分線.(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:                                                        ;
依據(jù)2:                                                        
(2)你有與小宇不同的思考方法嗎?請寫出你的證明過程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線BA的方向平移至如圖2所示的位置,使點D落在BA的延長線上,F(xiàn)D的延長線與CA的延長線垂直相交于點M,BC的延長線與DE垂直相交于點N,連接OM、ON,試判斷線段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線AB、CD相交于O,因為∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2,其推理根據(jù)是(  )

A.同角的余角相等
B.等角的余角相等
C.同角的補角相等
D.等角的補角相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列說法中正確的個數(shù)有(    )
(1)在同一平面內(nèi),不相交的兩條直線必平行.
(2)在同一平面內(nèi),不相交的兩條線段必平行.
(3)相等的角是對頂角.
(4)兩條直線被第三條直線所截,所得到同位角相等.
(5)兩條平行線被第三條直線所截,一對內(nèi)錯角的角平分線互相平行.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知,,則的度數(shù)為(   )
A.30° B.32.5° C.35° D.37.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,OC是∠AOD的平分線,OE是∠BOD的平分線。(1)如果∠AOB=130°,那么∠COE是多少度? (2)如果∠COE=65°,∠COD=20°,那么∠BOE是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,BD平分∠ABC,CD∥AB,若∠BCD=70°,則∠ABD的度數(shù)為( 。
A.55°B.50°C.45°D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,將一個長方形紙條折成如圖的形狀,若已知,則       °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知AB∥CD,∠C==80°,則∠A =        度.  

查看答案和解析>>

同步練習冊答案