【題目】已知:如圖所示,四邊形ABCD中,∠B=∠D=90°,AE平分∠DAB,AE//CF.
(1)說明:CF平分∠BCD;
(2)作△ADE的高DM,若AD=8,DE=6,AE=10,求DM的長。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像相交于點(diǎn),一次函數(shù)與軸相交于點(diǎn),與軸相交于點(diǎn).
(1)求和的值;
(2)點(diǎn)在軸正半軸上,且的面積為1,求點(diǎn)坐標(biāo);
(3)在(2)的條件下,點(diǎn)是一次函數(shù)上一點(diǎn),點(diǎn)是反比例函數(shù)圖像上一點(diǎn),且點(diǎn)、都在軸上方.如果以、、、為頂點(diǎn)的四邊形為平行四邊形,請直接寫出點(diǎn)、的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCE的邊長為1,點(diǎn)M、N分別在BC、CD上,且△CMN的周長為2,則△MAN的面積的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上,老師提出一個問題:如圖①,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是軸正半軸上一動點(diǎn),以為邊作等腰直角三角形,使,點(diǎn)在第一象限,設(shè)點(diǎn)的橫坐標(biāo)為,設(shè)……為,與之間的函數(shù)圖象如圖②所示.題中用“……”表示的缺失的條件應(yīng)補(bǔ)為( )
A.點(diǎn)的橫坐標(biāo)B.點(diǎn)的縱坐標(biāo)C.的周長D.的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,四邊形ABCD是長方形,∠A=∠B=∠C=∠D=90°,AB∥CD,AB=CD=8cm,AD=BC=6cm,D點(diǎn)與原點(diǎn)重合,坐標(biāo)為(0,0)
(1)寫出點(diǎn)B的坐標(biāo);
(2)動點(diǎn)P從點(diǎn)A出發(fā)以每秒3個單位長度的速度向終點(diǎn)B勻速運(yùn)動,動點(diǎn)Q從點(diǎn)C出發(fā)以每秒4個單位長度的速度沿射線CD方向勻速運(yùn)動,若P,Q兩點(diǎn)同時出發(fā),設(shè)運(yùn)動時間為t,當(dāng)t為何值時,PQ∥BC;
(3)在Q的運(yùn)行過程中,當(dāng)Q運(yùn)動到什么位置時,使△ADQ的面積為9,求此時Q點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某小區(qū)的一個健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點(diǎn)A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位為響應(yīng)政府發(fā)出的全民健身的號召,打算在長和寬分別為20 m和11 m的矩形大廳內(nèi)修建一個60 m2的矩形健身房ABCD.該健身房的四面墻壁中有兩側(cè)沿用大廳的舊墻壁(如圖為平面示意圖),已知裝修舊墻壁的費(fèi)用為20元/m2,新建(含裝修)墻壁的費(fèi)用為80元/m2.設(shè)健身房的高為3 m,一面舊墻壁AB的長為x m,修建健身房墻壁的總投入為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)為了合理利用大廳,要求自變量x必須滿足條件:8≤x≤12,當(dāng)投入的資金為4800元時,問利用舊墻壁的總長度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實(shí)國務(wù)院的指示精神,某地方政府出臺了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)有如下關(guān)系:y=-2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該產(chǎn)品銷售價定為每千克多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種產(chǎn)品的銷售價不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價應(yīng)定為每千克多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD是等腰△ABC底邊BC上的高,sinB= ,點(diǎn)E在AC上,且AE:EC=2:3,則tan∠ADE=( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com