【題目】如圖,某數(shù)學興趣小組想測量一棵樹CD的高度,他們先在點A處測得樹頂C的仰角為30°,然后沿AD方向前行10m,到達B點,在B處測得樹頂C的仰角高度為60°(A、B、D三點在同一直線上).請你根據(jù)他們測量數(shù)據(jù)計算這棵樹CD的高度(結(jié)果精確到0.1m).(參考數(shù)據(jù):≈1.414,≈1.732)

【答案】8.7

【解析】試題分析:首先利用三角形的外角的性質(zhì)求得∠ACB的度數(shù),得到BC的長度,然后在直角△BDC中,利用三角函數(shù)即可求解.

試題解析:∵∠CBD=∠A+∠ACB

∴∠ACB=∠CBD﹣∠A=60°﹣30°=30°,

∴∠A=∠ACB,

∴BC=AB=10(米).

在直角△BCD中,CD=BCsin∠CBD=10×=5≈5×1.732=8.7(米).

答:這棵樹CD的高度為8.7米.

考點:解直角三角形的應(yīng)用

型】解答
結(jié)束】
23

【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+ax+b交x軸于A(1,0),B(3,0)兩點,點P是拋物線上在第一象限內(nèi)的一點,直線BP與y軸相交于點C.

(1)求拋物線y=﹣x2+ax+b的解析式;

(2)當點P是線段BC的中點時,求點P的坐標;

(3)在(2)的條件下,求sin∠OCB的值.

【答案】(1) y=﹣x2+4x﹣3;(2) P的坐標為(,);(3) .

【解析】分析:(1)將點A、B代入拋物線y=-x2+ax+b,解得a,b可得解析式;

(2)由C點橫坐標為0可得P點橫坐標,將P點橫坐標代入(1)中拋物線解析式,易得P點坐標;

(3)由P點的坐標可得C點坐標,AB、C的坐標,利用勾股定理可得BC長,利用sin∠OCB=可得結(jié)果.

詳解:(1)將點A、B代入拋物線y=﹣x2+ax+b可得,

,

解得,a=4,b=﹣3,

∴拋物線的解析式為:y=﹣x2+4x﹣3;

(2)∵點Cy軸上,

所以C點橫坐標x=0,

∵點P是線段BC的中點,

∴點P橫坐標xP==,

∵點P在拋物線y=﹣x2+4x﹣3上,

yP=﹣3=,

∴點P的坐標為(,);

(3)∵點P的坐標為(,),點P是線段BC的中點,

∴點C的縱坐標為﹣0=,

∴點C的坐標為(0,),

BC==,

sinOCB===

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】黨的十八大提出,倡導富強、民主、文明、和諧,倡導自由、平等、公正、法治,倡導愛國、敬業(yè)、誠信、友善,積極培育和踐行社會主義核心價值觀,24個字是社會主義核心價值觀的基本內(nèi)容其中:

富強、民主、文明、和諧國家層面的價值目標;

自由、平等、公正、法治社會層面的價值取向;

愛國、敬業(yè)、誠信、友善公民個人層面的價值準則

小光同學將其中的文明、和諧、自由、平等的文字分別貼在4張硬紙板上,制成如右圖所示的卡片將這4張卡片背面朝上洗勻后放在桌子上,從中隨機抽取一張卡片,不放回,再隨機抽取一張卡片

1小光第一次抽取的卡片上的文字是國家層面價值目標的概率是

2請你用列表法或畫樹狀圖法,幫助小光求出兩次抽取卡片上的文字一次是國家層面價值目標、一次

社會層面價值取向的概率卡片名稱可用字母表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠COE90° OF 平分∠AOE,

1)若∠BOE80°,求∠COF的度數(shù).

2)若∠COFα(0°α90°),則∠BOE (用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,P為△ABC所在平面上一點,且∠APBBPCCPA120°,則點P叫作△ABC的費馬點.

(1)如果點P為銳角△ABC的費馬點,且∠ABC60°.

①求證: ABP∽△BCP;

②若PA3PC4,求PB的長;

(2)如圖②,已知銳角△ABC,分別以ABAC為邊向外作正△ABE和正△ACD,CEBD相交于點P,連接AP.

①求∠CPD的度數(shù);

②求證:點P為△ABC的費馬點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列結(jié)論:①平面內(nèi)3條直線兩兩相交,共有3個交點;②在平面內(nèi),若∠AOB =40°,∠AOC= BOC,則∠AOC的度數(shù)為20°;③若線段AB=3, BC=2,則線段AC的長為15;④若∠a+β=180°,且∠a<β,則∠a的余角為(β-a).其中正確結(jié)論的個數(shù)(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列結(jié)論:①幾個有理數(shù)相乘,若其中負因數(shù)有奇數(shù)個,則積為負;②兩個三次多項式的和一定是三次多項式;③若xyz0,則+++的值為0或﹣4;④若a,b互為相反數(shù),則=﹣1;⑤若xy,則.其中正確的個數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了解全校2400名學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調(diào)查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).

(1)這次調(diào)查中,一共抽取了多少名學生?

(2)補全頻數(shù)分布直方圖;

(3)估計全校所有學生中有多少人乘坐公交車上學.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A、B兩輛汽車同時從相距330千米的甲、乙兩地相向而行,s(千米)表示汽車與甲地的距離,t(分)表示汽車行駛的時間,如圖,L1,L2分別表示兩輛汽車的st的關(guān)系.

(1)L1表示哪輛汽車到甲地的距離與行駛時間的關(guān)系?

(2)汽車B的速度是多少?

(3)求L1,L2分別表示的兩輛汽車的st的關(guān)系式.

(4)2小時后,兩車相距多少千米?

(5)行駛多長時間后,A、B兩車相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明研究二次函數(shù)為常數(shù))性質(zhì)時有如下結(jié)論:①該二次函數(shù)圖象的頂點始終在平行于x軸的直線上;②該二次函數(shù)圖象的頂點與x軸的兩個交點構(gòu)成等腰直角三角形;③當時,yx的增大而增大,則m的取值范圍為;④點與點在函數(shù)圖象上,若,,則.其中正確結(jié)論的個數(shù)為(

A. 1B. 2C. 3D. 4

查看答案和解析>>

同步練習冊答案