年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知w關(guān)于t的函數(shù):,則下列有關(guān)此函數(shù)圖像的描述正確的是( )
(A)該函數(shù)圖像與坐標(biāo)軸有兩個(gè)交點(diǎn) (B)該函數(shù)圖像經(jīng)過第一象限
(C)該函數(shù)圖像關(guān)于原點(diǎn)中心對稱 (D)該函數(shù)圖像在第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線,被直線所截,∥,∠1=∠2,若∠4=70°,則∠3等于( )(原創(chuàng))
A、 40° B、50° C、70° D、80°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
類比、轉(zhuǎn)化、分類討論等思想方法和數(shù)學(xué)基本圖形在數(shù)學(xué)學(xué)習(xí)和解題中經(jīng)常用到,如下是一個(gè)案例,請補(bǔ)充完整。(原創(chuàng))
原題:如圖1,在⊙O中,MN是直徑,AB⊥MN于點(diǎn)B,CD⊥MN于點(diǎn)D,∠AOC=90°,AB=3,CD=4,則BD= 。
⑴嘗試探究:如圖2,在⊙O中,MN是直徑,AB⊥MN于點(diǎn)B,CD⊥MN于點(diǎn)D,點(diǎn)E在MN上,∠AEC=90°,AB=3,BD=8,BE:DE=1:3,則CD= (試寫出解答過程)。
⑵類比延伸:利用圖3,再探究,當(dāng)A、C兩點(diǎn)分別在直徑MN兩側(cè),且AB≠CD,AB⊥MN于點(diǎn)B,CD⊥MN于點(diǎn)D,∠AOC=90°時(shí),則線段AB、CD、BD滿足的數(shù)量關(guān)系為 。
⑶拓展遷移:如圖4,在平面直角坐標(biāo)系中,拋物線經(jīng)過A(m,6),B(n,1)兩點(diǎn)(其中0<m<3),且以y軸為對稱軸,且∠AOB=90°,①求mn的值;②當(dāng)S△AOB=10時(shí),求拋物線的解析式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,Rt△ABC的直角邊BC在x軸正半軸上,斜邊AC上的中線BD的反向延長線交y軸負(fù)半軸于點(diǎn)E,雙曲線(x>0)的圖像經(jīng)過點(diǎn)A,若則k=__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系中,拋物線與直線交于點(diǎn)A、B,M是拋物線上一個(gè)動(dòng)點(diǎn),連接OM。(原創(chuàng))
(1) 當(dāng)M為拋物線的頂點(diǎn)時(shí),求△OMB的面積;
(2) 當(dāng)點(diǎn)M在拋物線上,△OMB的面積為10時(shí),求點(diǎn)M的坐標(biāo);
(3) 當(dāng)點(diǎn)M在直線AB的下方且在拋物線對稱軸的右側(cè),M運(yùn)動(dòng)到何處時(shí),△OMB的面積最大;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是( 。
| A. | 10π | B. | 15π | C. | 20π | D. | 30π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com