【題目】如圖,正方形ABCD中,AB=2,將線(xiàn)段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段CE,線(xiàn)段BD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BF,連接EF,則圖中陰影部分的面積是______

【答案】6-π

【解析】

分別求出DC=BC=CE=2,BD=BF=2,求出∠DCE=90°,DBF,分別求出BCD、BEF、扇形DBF、扇形DCE的面積,即可得出答案.

過(guò)FFMBEM,則∠FME=FMB=90°,

∵四邊形ABCD是正方形,AB=2,

∴∠DCB=90°,DC=BC=AB=2,DCB=45°,

由勾股定理得:BD=2

∵將線(xiàn)段CD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段CE,線(xiàn)段BD繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段BF,

∴∠DCE=90°,BF=BD=2,FBE=90°-45°=45°,

BM=FM=2,ME=2,

∴陰影部分的面積S=SBCD+SBFE+S扇形DCE-S扇形DBF

=×2×2+×4×2+

=6-π,

故答案為:6-π.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BEO的直徑,點(diǎn)A和點(diǎn)D是⊙O上的兩點(diǎn),過(guò)點(diǎn)A作⊙O的切線(xiàn)交BE延長(zhǎng)線(xiàn)于點(diǎn).

(1)若∠ADE=25°,求∠C的度數(shù);

(2)若AB=AC,CE=2,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)學(xué)雷鋒、樹(shù)新風(fēng)、做文明中學(xué)生號(hào)召,某校開(kāi)展了志愿者服務(wù)活動(dòng),活動(dòng)項(xiàng)目有戒毒宣傳”、“文明交通崗”、“關(guān)愛(ài)老人”、“義務(wù)植樹(shù)”、“社區(qū)服務(wù)等五項(xiàng),活動(dòng)期間,隨機(jī)抽取了部分學(xué)生對(duì)志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動(dòng),最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線(xiàn)統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)被隨機(jī)抽取的學(xué)生共有多少名?

(2)在扇形統(tǒng)計(jì)圖中,求活動(dòng)數(shù)為3項(xiàng)的學(xué)生所對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線(xiàn)統(tǒng)計(jì)圖;

(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動(dòng)的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD在第一象限內(nèi),邊BCx軸平行,AB兩點(diǎn)的縱坐標(biāo)分別為3,1,反比例函數(shù)y的圖象經(jīng)過(guò)A,B兩點(diǎn),則點(diǎn)D的坐標(biāo)為( )

A. (213)B. (2+1,3)

C. (213)D. (2+1,3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,常數(shù)b0,m0,點(diǎn)A、B的坐標(biāo)分別為(,0)、(m,2m+b),正方形BCDE的頂點(diǎn)CD分別在x軸的正半軸上.

(1)直接寫(xiě)出點(diǎn)D和點(diǎn)E的坐標(biāo)(用含b、m的代數(shù)式表示)

(2)的值;

(3)正方形BC′D′E′和正方形BCDE關(guān)于直線(xiàn)AB對(duì)稱(chēng),點(diǎn)C′、D′、E′分別是點(diǎn)C、D、E的對(duì)稱(chēng)點(diǎn),C′D′y軸于點(diǎn)M,D′N(xiāo)x軸,垂足為N,連接MN

①若點(diǎn)N和點(diǎn)A關(guān)于y軸對(duì)稱(chēng),求證:MNMD′

②若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某海域,一艘海監(jiān)船在P處檢測(cè)到南偏西45°方向的B處有一艘不明船只,正沿正西方向航行,海監(jiān)船立即沿南偏西60°方向以40海里/小時(shí)的速度去截獲不明船只,經(jīng)過(guò)1.5小時(shí),剛好在A處截獲不明船只,求不明船只的航行速度.(≈1.41,≈1.73,結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某體育用品商店用4000元購(gòu)進(jìn)一批足球,全部售完后,又用3600元再次購(gòu)進(jìn)同樣的足球,但這次每個(gè)足球的進(jìn)價(jià)是第一次進(jìn)價(jià)的1.2倍,且數(shù)量比第一次少了10個(gè).

1)求第一次每個(gè)足球的進(jìn)價(jià)是多少元?

2)若第二次進(jìn)貨后按150/個(gè)的價(jià)格銷(xiāo)售,當(dāng)售出10個(gè)后,根據(jù)市場(chǎng)情況,商店決定對(duì)剩余的足球全部按同一標(biāo)準(zhǔn)一次性打折售完,但要求這次的利潤(rùn)不少于450元,問(wèn)該商店最低可打幾折銷(xiāo)售?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理有著悠久的歷史,它曾引起很多人的興趣.英國(guó)佩里加(HPerigal,18011898)用“水車(chē)翼輪法”(圖1)證明了勾股定理.該證法是用線(xiàn)段QXST,將正方形BIJC分割成四個(gè)全等的四邊形,再將這四個(gè)四邊形和正方形ACYZ拼成大正方形AEFB(圖2).若AD,tanAON,則正方形MNUV的周長(zhǎng)為( 。

A. B. 18C. 16D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“全民讀書(shū)月”活動(dòng)中,小明調(diào)查了班級(jí)里40名同學(xué)本學(xué)期購(gòu)買(mǎi)課外書(shū)的費(fèi)用情況,并將結(jié)果繪制成如圖所示的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:(直接填寫(xiě)結(jié)果)

費(fèi)用()

20

30

50

80

100

人數(shù)

6

a

10

b

4

(1)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是   元,中位數(shù)是   元;

(2)扇形統(tǒng)計(jì)圖中,“50元”所對(duì)應(yīng)的圓心角的度數(shù)為   度,該班學(xué)生購(gòu)買(mǎi)課外書(shū)的平均費(fèi)用為   元;

(3)若該校共有學(xué)生1000人,根據(jù)樣本數(shù)據(jù),估計(jì)本學(xué)期購(gòu)買(mǎi)課外書(shū)花費(fèi)50元的學(xué)生有   人.

查看答案和解析>>

同步練習(xí)冊(cè)答案