【題目】如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點M、N,使△AMN周長最小時,則∠AMN+∠ANM的度數(shù)為_____________.
科目:初中數(shù)學 來源: 題型:
【題目】某學生由于看錯了運算符號,把一個整式A減去多項式ab-2bc+3ac誤認為加上這個多項式,結果得出的答案是2bc-3ac+2ab.
(1)求整式A;
(2)求原題的正確答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖1:△ABC中,∠B、∠C的平分線相交于點O,過點O作EF∥BC交AB、AC于E、F.
(1)直接寫出圖1中所有的等腰三角形,并指出EF與BE、CF間有怎樣的數(shù)量關系?
(2)在(1)的條件下,若AB=10,AC=15,求△AEF的周長.
(3)如圖2,若△ABC中,∠B的平分線與三角形外角∠ACG的平分線CO交于點O,過O點作OE∥BC交AB于E,交AC于F,請問(1)中EF與BE、CF間的關系還是否存在,若存在,說明理由;若不存在,寫出三者新的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線BC//OA,∠C=∠OAB=100°,E,F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF.
(1)求∠BOE的度數(shù);
(2)若平行移動AB,那么∠OBC:∠OFC的值是否隨之發(fā)生變化?若變化,找出變化規(guī)律或求出變化范圍;若不變,求出這個比值(提示:圖中∠OFC=∠BOF+∠OBC);
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出∠OEC度數(shù);若不存在,說明理由(提示:三角形三個內(nèi)角的和為180).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為迎接“均衡教育大檢查”,縣委縣府對通往某偏遠學校的一段全長為1200 米的道路進行了改造,鋪設草油路面.鋪設400 米后,為了盡快完成道路改造,后來每天的工作效率比原計劃提高25%,結果共用13天完成道路改造任務.
(1)求原計劃每天鋪設路面多少米;
(2)若承包商原來每天支付工人工資為1500元,提高工作效率后每天支付給工人的工資增長了20%,完成整個工程后承包商共支付工人工資多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若單項式﹣xa+1y2與5ybx2是同類項,那么a、b的值分別是( 。
A.a=1,b=1B.a=1,b=2C.a=1,b=3D.a=2,b=2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國人很早就開始使用負數(shù),中國古代數(shù)學著作《九章算術》.如果收入120元記作+120元,那么-100元表示( )
A.支出20元B.支出100元C.收入20元D.收入100元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點D、F、E、G都在△ABC的邊上,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的度數(shù).(請在下面的空格處填寫理由或數(shù)學式)
解:∵EF∥AD,(已知)
∴∠2= ( )
∵∠1=∠2,(已知)
∴∠1= ( )
∴ ∥ ,( )
∴∠AGD+ =180°,(兩直線平行,同旁內(nèi)角互補)
∵ ,(已知)
∴∠AGD= (等式性質(zhì))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com