如圖:在梯形ABCD中,CDAB,點F在AB上.CF=BF,且CE⊥BC交AD于E,連接EF.已知EF⊥CE,
(1)若CF=10,CE=8,求BC的長.
(2)若點E是AD的中點,求證:AF+DC=BF.
(1)過點F作FH⊥BC于點H,
∵CE⊥BC,EF⊥CE,
∴四邊形CEFH是矩形,
∴CH=EF,
在Rt△CEF中,CF=10,CE=8,
∴EF=6,
∴CH=6,
∵CF=BF,
∴BC=2CH=12;

(2)連接EH,交CF于點G,
∵四邊形CEFH是矩形,
∴CG=GF,EG=GH,
∴EG是梯形ADCF的中位線,GH是△BCF的中位線,
∴EG=
1
2
(AF+DC),GH=
1
2
BF,
∴AF+DC=BF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:梯形ABCD中,ADBC,M、N分別是BD、AC的中點(如圖).
求證:(1)MNBC;
(2)MN=
1
2
(BC-AD).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,在直角梯形ABCD中,ADBC,∠B=90°,EF是中位線,ED平分∠ADC,下面的結論:①CE平分∠BCD;②CD=AD+BC;③點E到CD的距離為
1
2
AB,其中正確結論的個數(shù)有( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知梯形ABCD中,ADBC,∠ABC=60°,BD=2
3
,AE為梯形的高,且BE=1,則AD=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,已知等腰梯形ABCD中,ADBC,下底BC與上底AD的差恰好等于腰長AB,則∠BAD=( 。
A.120°B.135°C.150°D.60°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在直角梯形中,AD=6cm,BC=11cm,CD=12cm,則AB的長為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等腰梯形ABCD中,AD=2,BC=6,高DF=2,則腰長DC=______.已知直角三角形中30°角所對的直角邊長是2
3
cm,則另一條直角邊的長是______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在等腰梯形ABCD中,ABCD,AD=BC=acm,∠A=60°,BD平分∠ABC,則這個梯形的周長是( 。
A.4acmB.5acmC.6acmD.7acm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖甲,四邊形ABCD是等腰梯形,ABDC.由4個這樣的等腰梯形可以拼出圖乙所示的平行四邊形.
(1)求梯形ABCD四個內角的度數(shù);
(2)試探梯形ABCD四條邊之間存在的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案