【題目】已知:如圖,在矩形ABCD中,點E,F(xiàn)分別在AB,CD邊上,BE=DF,連接CE,AF.求證:AF=CE.

【答案】證明:∵四邊形ABCD是矩形, ∴DC∥AB,DC=AB,
∴CF∥AE,
∵DF=BE,
∴CF=AE,
∴四邊形AFCE是平行四邊形,
∴AF=CE.
【解析】根據(jù)矩形的性質(zhì)得出DC∥AB,DC=AB,求出CF=AE,CF∥AE,根據(jù)平行四邊形的判定得出四邊形AFCE是平行四邊形,即可得出答案.
【考點精析】關(guān)于本題考查的平行四邊形的判定與性質(zhì)和矩形的性質(zhì),需要了解若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積;矩形的四個角都是直角,矩形的對角線相等才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果方程x2+4x+n0可以配方成(x+m23,那么(mn2018_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】抽樣調(diào)查某班10名同學(xué)身高(單位:厘米)如下:160,152,165,152,160,160,170,160,165,159.則這組數(shù)據(jù)的眾數(shù)是( 。

A. 152B. 160C. 165D. 170

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C在線段AB上,AC=8 cm,CB=6 cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若C在線段AB的延長線上,且滿足AC﹣BC=bcm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由;
(4)你能用一句簡潔的話,描述你發(fā)現(xiàn)的結(jié)論嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將二次函數(shù)y=x2的圖象向右平移1個單位,再向上平移2個單位后,所得圖象的函數(shù)表達(dá)式是(
A.y=(x﹣1)2+2
B.y=(x+1)2+2
C.y=(x﹣1)2﹣2
D.y=(x+1)2﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求圖中半圓的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以O(shè)B為一邊,在△OAB外作等邊三角形OBC,D是OB的中點,連接AD并延長交OC于E.
(1)求點B的坐標(biāo);
(2)求證:四邊形ABCE是平行四邊形;
(3)如圖2,將圖1中的四邊形ABCO折疊,使點C與點A重合,折痕為FG,求OG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下圖,思考問題:

(1)你認(rèn)識上面的圖片中的哪些物體?
(2)這些物體的表面形狀類似與哪些幾何體?說說你的理由。
(3)你能再舉出一些常見的圖形嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點A(﹣3,y1),B(﹣1,y2),C(2,y3)在函數(shù)y=﹣x2﹣2x+b的圖象上,則y1、y2、y3的大小關(guān)系為(
A.y1<y3<y2
B.y3<y1<y2
C.y3<y2<y1
D.y2<y1y3

查看答案和解析>>

同步練習(xí)冊答案