【題目】如圖,在△ABC中,AB=AC=13,BC=10,點(diǎn)D為BC的中點(diǎn),DE⊥AB于點(diǎn)E,則tan∠BDE的值等于( )
A.B.C.D.
【答案】C
【解析】
連接AD,由△ABC中,AB=AC=13,BC=10,D為BC中點(diǎn),利用等腰三角形三線合一的性質(zhì),可證得AD⊥BC,再利用勾股定理,求得AD的長(zhǎng),那么在直角△ABD中根據(jù)三角函數(shù)的定義求出tan∠BAD,然后根據(jù)同角的余角相等得出∠BDE=∠BAD,于是tan∠BDE=tan∠BAD.
解:連接AD,
∵△ABC中,AB=AC=13,BC=10,D為BC中點(diǎn),
∴AD⊥BC,BD=BC=5,
∴AD==12,
∴tan∠BAD==
∵AD⊥BC,DE⊥AB,
∴∠BDE+∠ADE=90°,∠BAD+∠ADE=90°,
∴∠BDE=∠BAD,
∴tan∠BDE=tan∠BAD=.
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將邊長(zhǎng)為4的正方形紙片ABCD折疊,使得點(diǎn)A落在邊CD的中點(diǎn)E處,折痕為FG,點(diǎn)F、G分別在邊AD、BC上,則折痕FG的長(zhǎng)度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y=(a≠0)的圖象在第一象限交于A、B兩點(diǎn),A點(diǎn)的坐標(biāo)為(m,4),B點(diǎn)的坐標(biāo)為(3,2),連接OA、OB,過(guò)B作BD⊥y軸,垂足為D,交OA于C.若OC=CA,
(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;
(2)求△AOB的面積;
(3)在直線BD上是否存在一點(diǎn)E,使得△AOE是直角三角形,求出所有可能的E點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線C1:y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(-1,0)、B(3,0)、C(0,-3).
(1)求拋物線C1的解析式;
(2)將拋物線C1向左平移幾個(gè)單位長(zhǎng)度,可使所得的拋物線C2經(jīng)過(guò)坐標(biāo)原點(diǎn),并求出C2的解析式;
(3)把拋物線C1繞點(diǎn)A(-1,O)旋轉(zhuǎn)180°,寫(xiě)出所得拋物線C3頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 是等邊三角形,D 為 CB 延長(zhǎng)線上一點(diǎn),E 為 BC 延長(zhǎng)線上點(diǎn).
(1)當(dāng) BD、BC 和 CE 滿足什么條件時(shí),△ADB∽△EAC?
(2)當(dāng)△ADB∽△EAC 時(shí),求∠DAE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,點(diǎn)D在AC邊上,以AD為直徑作⊙O交BD的延長(zhǎng)線于點(diǎn)E,CE=BC.
(1)求證:CE是⊙O的切線;
(2)若CD=2,BD=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn),并與x軸交于點(diǎn)A(2,0).
(1)求此拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)若拋物線上有一點(diǎn)B,且S△OAB=1,求點(diǎn)B的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=-x2+bx+c的頂點(diǎn)為C(3,4),交x軸于點(diǎn)A,B(點(diǎn)B在點(diǎn)A的右側(cè)),點(diǎn)P在第一象限,且在拋物線AC部分上,PD⊥PC交x軸于點(diǎn)D。
(1)求該拋物線的表達(dá)式;
(2)若PD=3PC,求OD的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com