【題目】(A類)已知如圖,四邊形ABCD中,AB=BC,AD=CD,求證:∠A=C.

(B類)已知如圖,四邊形ABCD中,AB=BC,A=C,求證:AD=CD.

【答案】(A類)證明見解析;(B類)證明見解析.

【解析】

A類)連接AC,由AB=AC、AD=CD知∠BAC=BCA、DAC=DCA,兩等式相加即可得;

(B類)連接AC,AB=BC,可得∠BAC=BCA,再根據(jù)∠BAD=BCD則可得∠DAC=DCA,根據(jù)等腰三角形的判定即可得AD=CD.

(A類)連接AC,

AB=AC,AD=CD,

∴∠BAC=BCA,DAC=DCA,

∴∠BAC+DAC=BCA+DCA,

即∠BAD=BCD;

(B類)連接AC,

AB=BC,

∴∠BAC=BCA,

又∵∠BAD=BCD,即∠BAC+DAC=BCA+DCA,

∴∠DAC=DCA,

AD=CD.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》是中國傳統(tǒng)數(shù)學最重要的著作,奠定了中國傳統(tǒng)數(shù)學的基本框架.其中記載了一個折竹抵地問題:今有竹高二丈,末折抵地,去本六尺,問折者高幾何?

譯文:有一根竹子,原高二丈(1丈=10尺),現(xiàn)被風折斷,竹梢觸地面處與竹根的距離為6尺,問折斷處離地面的高度為多少尺?

如圖,我們用點A,B,C分別表示竹梢,竹根和折斷處,設(shè)折斷處離地面的高度BCx尺,則可列方程為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、B、O是正方形網(wǎng)格上的三個格點,⊙O的半徑為OA,點P是優(yōu)弧 上的一點,則cos∠APB的值是( )

A.45°
B.1
C.
D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD中,∠BAD125°,∠B=∠D90°,在BC、CD上分別找一點M、N,當三角形AMN周長最小時,∠MAN的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B為切點,∠OAB=30度.

(1)求∠APB的度數(shù);
(2)當OA=3時,求AP的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】愛動腦筋的小明同學在買一雙新的運動鞋時,發(fā)現(xiàn)了一個有趣現(xiàn)象:即鞋子的碼數(shù)y(碼)與鞋子的長xcm)之間存在著某種聯(lián)系.經(jīng)過收集數(shù)據(jù),得到如表:

鞋長xcm

22

23

24

25

26

碼數(shù)y(碼)

34

36

38

40

42

請你替小明解決下列問題:

1)當鞋長為28cm時,鞋子的碼數(shù)是多少?

2)寫出yx之間的關(guān)系式;

3)已知姚明的鞋子穿52碼時,則他穿的鞋長是多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,半徑為5的⊙A中,弦BC,ED所對的圓心角分別是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則弦BC的長等于( )

A.8
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某同學報名參加校運動會,有以下5個項目可供選擇:
徑賽項目:100m,200m,400m(分別用A1、A2、A3表示);
田賽項目:跳遠,跳高(分別用B1、B2表示).
該同學從5個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃用元從廠家購進臺新型電子產(chǎn)品,已知該廠家生產(chǎn)甲、乙、丙三種不同型號的電子產(chǎn)品,設(shè)甲、乙型設(shè)備應(yīng)各買入臺,其中每臺的價格、銷售獲利如下表:

甲型

乙型

丙型

價格(元/臺)

銷售獲利(元/臺)

購買丙型設(shè)備 (用含的代數(shù)式表示) ;

若商場同時購進三種不同型號的電子產(chǎn)品(每種型號至少有一臺),恰好用了元,則商場有哪幾種購進方案?

在第題的基礎(chǔ)上,為了使銷售時獲利最多,應(yīng)選擇哪種購進方案?此時獲利為多少?

查看答案和解析>>

同步練習冊答案