【題目】如圖,在△ABC中,D、EF分別為BC、AC、AB的中點(diǎn),AD、BECF相交于點(diǎn)O,AB6,AC8,BC10,則DE_____,OA_____,OF_____,∠DEF=∠_____

【答案】3 ABC

【解析】

易得DE是△ABC的中位線,那么DE等于AB的一半;可證得△ABC是直角三角形,那么AD等于BC的一半;AO等于AD的三分之二;利用勾股定理可得求得FC的長(zhǎng),則OF等于CF的三分之一;各對(duì)應(yīng)邊成比例,那么△ABC∽△DEF,那么∠DEF=ABC.

解:D、E、F分別為BCAC、AB的中點(diǎn),

DEABC的中位線,

DEAB3;

AB6,AC8BC10,

∴∠A90°,

ADBC5

同理DEAB

∴△DOE∽△AOB,

,

AOAD

CF,

同理可得OFCF,

OFCF

∵△ABCDEF各對(duì)應(yīng)邊之比均為12,

∴△ABC∽△DEF

∴∠DEFABC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(9)已知:ABCD的兩邊ABAD的長(zhǎng)是關(guān)于x的方程的兩個(gè)實(shí)數(shù)根.

1)當(dāng)m為何值時(shí),四邊形ABCD是菱形?求出這時(shí)菱形的邊長(zhǎng);

2)若AB的長(zhǎng)為2,那么ABCD的周長(zhǎng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本中有一道作業(yè)題:

有一塊三角形余料ABC,它的邊BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一邊在BC上,其余兩個(gè)頂點(diǎn)分別在AB,AC上.問(wèn)加工成的正方形零件的邊長(zhǎng)是多少mm?

小穎解得此題的答案為48mm,小穎善于反思,她又提出了如下的問(wèn)題.

1)如果原題中要加工的零件是一個(gè)矩形,且此矩形是由兩個(gè)并排放置的正方形所組成,如圖1,此時(shí),這個(gè)矩形零件的兩條邊長(zhǎng)又分別為多少mm?請(qǐng)你計(jì)算.

2)如果原題中所要加工的零件只是一個(gè)矩形,如圖2,這樣,此矩形零件的兩條邊長(zhǎng)就不能確定,但這個(gè)矩形面積有最大值,求達(dá)到這個(gè)最大值時(shí)矩形零件的兩條邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)O是等邊ABC內(nèi)的任一點(diǎn),連接OA,OB,OC.

(1)如圖1,已知AOB=150°,BOC=120°,將BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得ADC.

DAO的度數(shù)是 ;

②用等式表示線段OA,OB,OC之間的數(shù)量關(guān)系,并證明;

(2)設(shè)AOB=α,BOC=β.

①當(dāng)α,β滿足什么關(guān)系時(shí),OA+OB+OC有最小值?請(qǐng)?jiān)趫D2中畫出符合條件的圖形,并說(shuō)明理由;

②若等邊ABC的邊長(zhǎng)為1,直接寫出OA+OB+OC的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課本中有一個(gè)例題:

有一個(gè)窗戶形狀如圖1,上部是一個(gè)半圓,下部是一個(gè)矩形,如果制作窗框的材料總長(zhǎng)為6m,如何設(shè)計(jì)這個(gè)窗戶,使透光面積最大?

這個(gè)例題的答案是:當(dāng)窗戶半圓的半徑約為0.35m時(shí),透光面積最大值約為1.05m2

我們?nèi)绻淖冞@個(gè)窗戶的形狀,上部改為由兩個(gè)正方形組成的矩形,如圖2,材料總長(zhǎng)仍為6m,利用圖3,解答下列問(wèn)題:

1)若AB1m,求此時(shí)窗戶的透光面積?

2)與課本中的例題比較,改變窗戶形狀后,窗戶透光面積的最大值有沒(méi)有變大?請(qǐng)通過(guò)計(jì)算說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD是菱形,點(diǎn)E在邊CD上,點(diǎn)FBC的延長(zhǎng)線上,CFDE,AE的延長(zhǎng)線與DF相交于點(diǎn)G

1)求證:∠CDF=∠DAE;

2)如果DECE,求證:AE3EG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某小學(xué)門口有一直線馬路,交警在門口設(shè)有一條寬度為4米的斑馬線,為安全起見,規(guī)定車頭距斑馬線后端的水平距離不得低于2米,現(xiàn)有一旅游車在路口遇紅燈剎車停下,汽車?yán)锼緳C(jī)與斑馬線前后兩端的視角分別為∠FAE=15°和∠FAD=30°,司機(jī)距車頭的水平距離為0.8米,試問(wèn)該旅游車停車是否符合上述安全標(biāo)準(zhǔn)?(E,D,C,B四點(diǎn)在平行于斑馬線的同一直線上)(參考數(shù)據(jù):tan15°=2-,≈1.732,≈1.414)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)的圖象過(guò)點(diǎn)(1,)、(2,4)、(﹣1,)與x軸分別交于B(左)、C兩點(diǎn),與y軸交于點(diǎn)A

1)求二次函數(shù)的解析式;

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2﹣2x﹣3x軸交于A,B兩點(diǎn)(AB的左側(cè)),頂點(diǎn)為C.

(1)A,B兩點(diǎn)的坐標(biāo);

(2)若將該拋物線向上平移t個(gè)單位后,它與x軸恰好只有一個(gè)交點(diǎn),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案