18、在△ABC和△ADC中,有下列三個論斷:①BC=DC; ②∠BAC=∠DAC;③AB=AD.將兩個論斷作為條件,另一個論斷作為結(jié)論構(gòu)成一個真命題,則題設(shè)是
②③
,結(jié)論為
.(填序號)
分析:此題的意思是假設(shè) ②∠BAC=∠DAC;③AB=AD,正確,證明:①BC=DC結(jié)論正確,我們可以先求證兩個三角形全等,然后即可得出結(jié)論.
解答:解∵∠BAC=∠DAC,
AB=AD,AC為公共邊,
∴△ABC≌△ADC,(SAS),
∴BC=DC.
故答案為:①②;①.
點(diǎn)評:此題主要考查全等三角形的判定與性質(zhì)這一知識點(diǎn),此題的關(guān)鍵是學(xué)生明確題設(shè)和結(jié)論的含義,然后問題可解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

12、在△ABC和△ADC中,有下列三個論斷:(1)AB=AD,(2)∠BAC=∠DAC,(3)BC=DC.將兩個論斷作為條件,另一個論斷作為結(jié)論構(gòu)成三個命題:(1)若AB=AD,∠BAC=∠DAC,則BC=DC;(2)若AB=AD,BC=DC,則∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC=DC,則AB=AD.其中,正確命題的個數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、在△ABC和△ADC中,下列論斷:①AB=AD;②∠BAC=∠DAC;③BC=DC,把其中兩個論斷作為條件,另一個論斷作為結(jié)論,寫出一個真命題:
在△ABC和△ADC中,如果AB=AD,∠BAC=∠DAC,那么BC=DC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、在△ABC和△ADC中,下列三個論斷(1)AB=AD、(2)∠BAC=∠DAC、(3)BC=DC,將其中的兩個論斷作為條件,另一個論斷作為結(jié)論寫出一個真命題
已知:AB=AD,∠BAC=∠DAC
求證:BC=DC或已知:AB=AD,BC=DC
求證:∠BAC=∠DAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

3、如圖,在△ABC和△ADC中,AB=AD,要判定△ABC≌△ADC,還需要增加的條件是
∠BAC=∠DAC
.(只需寫出一個條件)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、在△ABC和△ADC中,給出下列三個論斷:①BC=DC;②∠BAC=∠DAC;③AB=AD.
請將其中兩個論斷作為條件,另一個論斷作為結(jié)論構(gòu)成一個真命題.然后寫出證明過程.

查看答案和解析>>

同步練習(xí)冊答案