【題目】如圖,在平面直角坐標(biāo)系中,直線ly=-2x8分別與x軸,y軸相交于A,B兩點(diǎn),點(diǎn)P(0,k)y軸的負(fù)半軸上的一個(gè)動(dòng)點(diǎn),以點(diǎn)P為圓心,3為半徑作⊙P,連結(jié)PA,若PAPB,試判斷⊙Px軸的位置關(guān)系,并說明理由.

【答案】Px軸相切.

【解析】

由直線y=-2x8可求出A、B的坐標(biāo)從而求出OAOB的長(zhǎng),再結(jié)合點(diǎn)P的坐標(biāo)表示出AP的長(zhǎng),然后在Rt△AOP中,利用勾股定理列方程求解即可.

解:⊙Px軸相切,

理由:直線y=-2x8x軸交于A(4,0),與y軸交于B(0,-8),

OA4,OB8,由題意OP=-k,

PBPA8k,在RtAOP中,k242(8k)2,

k=-3,

OP等于⊙P的半徑,

∴⊙Px軸相切

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若拋物線yx23x+cy軸的交點(diǎn)為(0,2),則下列說法正確的是( 。

A. 拋物線開口向下

B. 拋物線與x軸的交點(diǎn)為(﹣10),(30

C. 當(dāng)x1時(shí),y有最大值為0

D. 拋物線的對(duì)稱軸是直線x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,PA、PB是⊙O的切線,A、B為切點(diǎn),∠OAB30°.

1)求∠APB的度數(shù);

2)當(dāng)OA3時(shí),求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線AB與函數(shù)yx>0)的圖象交于點(diǎn)Am,2),B(2,n).過點(diǎn)AAC平行于x軸交y軸于點(diǎn)C,在y軸負(fù)半軸上取一點(diǎn)D,使ODOC,且ACD的面積是6,連接BC

(1)求mk,n的值;

(2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織了一次全校2000名學(xué)生參加的比賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于60分,為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了100名學(xué)生的成績(jī)(成績(jī)x取整數(shù),滿分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)表:

請(qǐng)依據(jù)所給信息,解答下列問題:

1)直接填空:a   ,b   c   ;

2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

3)請(qǐng)自己提出一個(gè)與該題信息相關(guān)的問題,并解答你提出的問題.

成績(jī)x/

頻數(shù)

頻率

60≤x70

5

0.05

70≤x80

20

b

80≤x90

a

c

90≤x≤100

40

0.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:6x4-35x3+62x2-35x+6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4cm,以正方形的一邊BC為直徑在正方形ABCD內(nèi)作半圓,過A作半圓的切線,與半圓相切于F點(diǎn),與DC相交于E點(diǎn),則△ADE的面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點(diǎn)D是邊BC上一動(dòng)點(diǎn) (不與B,C重合),∠ADE=∠B=α,DEAC于點(diǎn)E,且 .下列結(jié)論: ①△ADE∽△ACD;當(dāng)BD=6時(shí),△ABD△DCE全等;③△DCE為直角三角形時(shí),BD8;④CD2=CECA.其中正確的結(jié)論是________(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是從一副撲克牌中取出的兩組牌,分別是黑桃1,2,3,4和方塊1,2,3,4,將它們背面朝上分別重新洗牌后,從兩組牌中各摸出一張,那么摸出的兩張牌的牌面數(shù)字之和等于5的概率是多少?請(qǐng)你用列舉法(列表或畫樹狀圖)加以分析說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案