計算:
a+2
a2-2a+1
a2-4a+4
a+1
÷
a2-4
a2-1

x
y
-
y
x
+
x2+y2
xy
①原式=
a+2
(a-1)2
(a-2)2
a+1
(a+1)(a-1)
(a+2)(a-2)

=
a-2
a-1


②原式=
x2
xy
-
y2
xy
+
x2+y2
xy

=
x2-y2+x2+y2
xy

=
2x
y
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定它們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知小麗和小穎購買同一種商品的平均價格分別為
a+b
2
元/千克和
2ab
a+b
元/千克(a、b是正數(shù),且a≠b),試比較小麗和小穎所購買商品的平均價格的高低.
(2)試比較圖2和圖3中兩個矩形周長M1、N1的大。╞>c).

聯(lián)系拓廣
小剛在超市里買了一些物品,用一個長方體的箱子“打包”,這個箱子的尺寸如圖4所示(其中b>a>c>0),售貨員分別可按圖5、圖6、圖7三種方法進(jìn)行捆綁,問哪種方法用繩最短?哪種方法用繩最長?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先化簡,再求值:
(1)(a-
2ab-b2
a
)•
a2+ab
a2-b2
,其中a=1,-3<b<
3
且b為整數(shù);
(2)
m-3
3m2-6m
÷(m+2-
5
m-2
)
,其中m是方程x2+3x-1=0的根.
(3)化簡分式(
x
x-1
-
x
x2-1
x2-x
x2-2x+1
,并從-1≤x≤3中選一個你認(rèn)為合適的整數(shù)x代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知a≠0,S1=2a,S2=
2
S1
,S3=
2
S2
,…,S2013=
2
S2012
,則S2013=______.(用含a的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

解答下列各題:
(1)-
1
22
+
27
+(π-1)0-|-1+
1
4
|
-3tan60°;
(2)解不等式組
1-x>0
2(x+5)>4
,并把解集在數(shù)軸上表示出來.
(3)先化簡,再求值:
b
a-b
-
b3
a3-2a2b+ab2
÷
ab+b2
a2-b2
,其中a=
12
,b=
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)計算:2+(
2
-1)0-(-
1
2
)-2

(2)化簡求值:(
3
x-1
-x-1)÷
x2-4
x2-2x+1
,其中x2-1=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先化簡代數(shù)式
x-3
3x2-6x
÷(x+2-
5
x-2
);再從方程y2-3y+2=0的根中選擇一個合適的作為x的值,求出原代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

先化簡再求值:(
3a
a2-1
-
a
a-1
)÷(a-2)
,其中a是方程x2-x-1=0的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,過點O作直線與雙曲線y=(k≠0)交于A、B兩點,過點B作BC⊥x軸于點C,作BD⊥y軸于點D.在x軸上分別取點E、F,使點A、E、F在同一條直線上,且AE=AF.設(shè)圖中矩形ODBC的面積為S1,△EOF的面積為S2,則S1、S2的數(shù)量關(guān)系是(  )

A.S1=S2        B.2S1=S2        C.3S1=S2        D.4S1=S2

查看答案和解析>>

同步練習(xí)冊答案