【題目】愛(ài)好思考的小茜在探究?jī)蓷l直線(xiàn)的位置關(guān)系查閱資料時(shí),發(fā)現(xiàn)了“中垂三角形”,即兩條中線(xiàn)互相垂直的三角形稱(chēng)為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線(xiàn),AN⊥BN于點(diǎn)P,像△ABC這樣的三角形均為“中垂三角形”.設(shè)BC=a,AC=b,AB=c.
【特例探究】
(1)如圖1,當(dāng)tan∠PAB=1,c=4 時(shí),a= , b=;
如圖2,當(dāng)∠PAB=30°,c=2時(shí),a= , b=;
(2)【歸納證明】請(qǐng)你觀(guān)察(1)中的計(jì)算結(jié)果,猜想a2、b2、c2三者之間的關(guān)系,用等式表示出來(lái),并利用圖3證明你的結(jié)論.
(3)【拓展證明】如圖4,ABCD中,E、F分別是AD、BC的三等分點(diǎn),且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點(diǎn)G,AD=3 ,AB=3,求AF的長(zhǎng).
【答案】
(1)4 ;4 ;;
(2)
結(jié)論a2+b2=5c2.
證明:如圖3中,
連接EF.
∵AF、BE是中線(xiàn),
∴EF∥AB,EF= AB,
∴△FPE∽△APB,
∴ = = ,
設(shè)FP=x,EP=y,則AP=2x,BP=2y,
∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2,
b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2,
c2=AB2=AP2+BP2=4x2+4y2,
∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.
(3)
解:如圖4中,
在△AGE和△FGB中,
,
∴△AGE≌△FGB,
∴BG=FG,取AB中點(diǎn)H,連接FH并且延長(zhǎng)交DA的延長(zhǎng)線(xiàn)于P點(diǎn),
同理可證△APH≌△BFH,
∴AP=BF,PE=CF=2BF,
即PE∥CF,PE=CF,
∴四邊形CEPF是平行四邊形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,
∵AB=3,BF= AD= ,
∴9+AF2=5×( )2,
∴AF=4.
【解析】(1)解:如圖1中,
∵CE=AE,CF=BF,
∴EF∥AB,EF= AB=2 ,
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PEF=∠PFE=45°,
∴PF=PE=2,PB=PA=4,
∴AE=BF= =2 .
∴b=AC=2AE=4 ,a=BC=4 .
故答案為4 ,4 .
如圖2中,
連接EF,
, ∵CE=AE,CF=BF,
∴EF∥AB,EF= AB=1,
∵∠PAB=30°,
∴PB=1,PA= ,
在RT△EFP中,∵∠EFP=∠PAB=30°,
∴PE= ,PF= ,
∴AE= = ,BF= = ,
∴a=BC=2BF= ,b=AC=2AE= ,
故答案分別為 , .
(1)①首先證明△APB,△PEF都是等腰直角三角形,求出PA、PB、PE、PF,再利用勾股定理即可解決問(wèn)題.
②連接EF,在RT△PAB,RT△PEF中,利用30°性質(zhì)求出PA、PB、PE、PF,再利用勾股定理即可解決問(wèn)題.(2)結(jié)論a2+b2=5c2 . 設(shè)MP=x,NP=y,則AP=2x,BP=2y,利用勾股定理分別求出a2、b2、c2即可解決問(wèn)題.(3)取AB中點(diǎn)H,連接FH并且延長(zhǎng)交DA的延長(zhǎng)線(xiàn)于P點(diǎn),首先證明△ABF是中垂三角形,利用(2)中結(jié)論列出方程即可解決問(wèn)題.本題考查四邊形綜合題、三角形中位線(xiàn)定理、平行四邊形的判定和性質(zhì)、勾股定理等知識(shí),解題的關(guān)鍵是理解題意,學(xué)會(huì)添加常用輔助線(xiàn)構(gòu)造全等三角形,學(xué)會(huì)利用新的結(jié)論解決問(wèn)題,屬于中考?jí)狠S題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,AP是⊙O的切線(xiàn),A是切點(diǎn),BP與⊙O交于點(diǎn)C,點(diǎn)D為AP的中點(diǎn),連結(jié)AC.求證:
(1)∠P=∠BAC
(2)直線(xiàn)CD是⊙O的切線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C,E是直線(xiàn)l兩側(cè)的點(diǎn),以C為圓心,CE長(zhǎng)為半徑畫(huà)弧交l于A(yíng),B兩點(diǎn),又分別以A,B為圓心,大于 AB的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)D,連接CA,CB,CD,下列結(jié)論不一定正確的是( )
A.CD⊥l
B.點(diǎn)A,B關(guān)于直線(xiàn)CD對(duì)稱(chēng)
C.點(diǎn)C,D關(guān)于直線(xiàn)l對(duì)稱(chēng)
D.CD平分∠ACB
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,A,E為格點(diǎn),B,F(xiàn)為小正方形邊的中點(diǎn),C為AE,BF的延長(zhǎng)線(xiàn)的交點(diǎn).
(1)AE的長(zhǎng)等于;
(2)若點(diǎn)P在線(xiàn)段AC上,點(diǎn)Q在線(xiàn)段BC上,且滿(mǎn)足AP=PQ=QB,請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫(huà)出線(xiàn)段PQ,并簡(jiǎn)要說(shuō)明點(diǎn)P,Q的位置是如何找到的(不要求證明) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y是x的函數(shù),自變量x的取值范圍x>0,下表是y與x的幾組對(duì)應(yīng)值:
x | … | 1 | 2 | 3 | 5 | 7 | 9 | … |
y | … | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | … |
小騰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的y與x之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.
下面是小騰的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表格中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;
(2)根據(jù)畫(huà)出的函數(shù)圖象,寫(xiě)出:
①x=4對(duì)應(yīng)的函數(shù)值y約為
②該函數(shù)的一條性質(zhì):
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,其面積標(biāo)記為S1 , 以CD為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積標(biāo)記為S2 , …,按照此規(guī)律繼續(xù)下去,則S9的值為( )
A.( )6
B.( )7
C.( )6
D.( )7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一列按一定順序和規(guī)律排列的數(shù):
第一個(gè)數(shù)是 ;
第二個(gè)數(shù)是 ;
第三個(gè)數(shù)是 ;
…
對(duì)任何正整數(shù)n,第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于 .
(1)經(jīng)過(guò)探究,我們發(fā)現(xiàn):
設(shè)這列數(shù)的第5個(gè)數(shù)為a,那么 , , ,哪個(gè)正確?
請(qǐng)你直接寫(xiě)出正確的結(jié)論;
(2)請(qǐng)你觀(guān)察第1個(gè)數(shù)、第2個(gè)數(shù)、第3個(gè)數(shù),猜想這列數(shù)的第n個(gè)數(shù)(即用正整數(shù)n表示第n數(shù)),并且證明你的猜想滿(mǎn)足“第n個(gè)數(shù)與第(n+1)個(gè)數(shù)的和等于 ”;
(3)設(shè)M表示 , , ,…, ,這2016個(gè)數(shù)的和,即 ,
求證: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,直線(xiàn)AB∥CD,點(diǎn)P在兩平行線(xiàn)之間,寫(xiě)出∠BAP、∠APC、∠DCP滿(mǎn)足的數(shù)量關(guān)系.
(2)如圖2,直線(xiàn)AB與CD相交于點(diǎn)E,點(diǎn)P為∠AEC內(nèi)一點(diǎn),AQ平分∠EAP,CQ平分∠ECP,若∠AEC=40°,∠AQC=70°,求∠APC的度數(shù).
(3)如圖3,連接AD、CB交于點(diǎn)P,AQ平分∠BAD,CQ平分∠BCD,探究∠ABC、∠AQC、∠ADC滿(mǎn)足的關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com