【題目】如圖,矩形ABCD中,AB=6,BC=10,將矩形沿AC折疊,使點B與點E重合,AD與EC相交于點F.
(1)求證:AF=CF;
(2)求△AEF的面積.
【答案】(1)見解析;(2)9.6
【解析】
(1)根據(jù)翻折的性質,可得AB=AE,∠E=∠B的關系,根據(jù)AAS,可得△AEF≌△CDF,可得AF=CF;
(2)設EF=DF=x, AF=AD﹣DF=10﹣x,在直角三角形中運用勾股定理列方程求出EF的值,再運用三角形面積公式即可計算出結果.
(1)證明:∵四邊形ABCD是矩形,
∴AB=CD,∠B=∠D=90°,
∵將矩形沿AC折疊,使點B與點E重合,AD與EC相交于點F,
∴AE=AB,∠E=∠B=90°.
∵∠AFE與∠CFD是對頂角,
∴∠AFE=∠CFD.
在△AFE和△CFD中,
,
∴△AEF≌△CDF(AAS),
∴AF=CF;
(2)由(1)得AD=BC=10,AE=AB=6,
設EF=DF=x, AF=AD﹣DF=10﹣x,
由勾股定理,得 EF2+AE2=AF2,
x2+62=(10﹣x)2,
x=3.2,即EF=3.2,
∴△AEF的面積=EF×AE=×3.2×6=9.6
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=m°,∠ABC和∠ACD的平分線相交于點A1,得∠A1;∠A1BC和∠A1CD的平分線相交于點A2,得∠A2;…;∠A2018BC和∠A2018CD的平分線交于點A2019,則∠A2019=________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A,B兩地相距60 km,甲、乙兩人從兩地出發(fā)相向而行,甲先出發(fā).圖中l1,l2表示兩人離A地的距離s(km)與時間t(h)的關系,請結合圖象解答下列問題:
(1)表示乙離A地的距離與時間關系的圖象是_____(填l1或l2);甲的速度是_____,乙的速度是_____
(2)甲出發(fā)多少小時兩人恰好相距5 km?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,函數(shù)y=(x>0)的圖象G經(jīng)過點A(4,1),直線l:y=+b與圖象G交于點B,與y軸交于點C.
(1)求k的值;
(2)橫、縱坐標都是整數(shù)的點叫做整點.記圖象G在點A,B之間的部分與線段OA,OC,BC圍成的區(qū)域(不含邊界)為w.
①當b=﹣1時,直接寫出區(qū)域W內(nèi)的整點個數(shù);
②若區(qū)域W內(nèi)恰有4個整點,結合函數(shù)圖象,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CB是⊙O的弦,CD是⊙O的直徑,點A為CD延長線上一點,BC=AB,∠CAB=30°.
(1)求證:AB是⊙O的切線;(2)若⊙O的半徑為2,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD是高,CE是中線,DG垂直平分CE,連接DE.
(1)求證:DC=BE;
(2)若∠AEC=72°,求∠BCE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點B,C分別在線段NM,NA上,在△ABC中,∠A∶∠ABC∶∠BCA=3∶5∶10,且△ABC≌△MNC,則∠BCM∶∠NBA等于( )
A.1∶2B.1∶3C.1∶4D.1∶5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△DEB中,已知AB=DE,還需添加兩個條件才能使△ABC≌△DEC,不能添加的一組條件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com