【題目】如圖所示,折疊長方形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知AB=8cm,BC=10cm,求EF的長.

【答案】解:∵△ADE與△AFE關(guān)于AE對(duì)稱,

∴AD=AF,DE=EF.

∵四邊形ABCD是矩形,

∴∠B=∠C=90°,

在Rt△ABF中, AF=AD=BC=10cm,AB=8cm,

∴BF= =6(cm)

∴FC=BC-BF=10-6=4(cm)

設(shè)EC=xcm,則EF=DE=(8-x)cm

在Rt△ECF中,

,解得:x=3.

EF=DE=8-x=8-3=5(cm)

即EF的長為5cm


【解析】根據(jù)△ADE與△AFE關(guān)于AE對(duì)稱,得到AD=AF,DE=EF;根據(jù)勾股定理求出BF的值;再根據(jù)勾股定理求出EF=DE的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,則PD的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(﹣2)2014+3×(﹣2)2013的值為( 。

A.﹣22013
B.22013
C.22014
D.22014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名同學(xué)進(jìn)入初三后,某科6次考試成績?nèi)鐖D:
(1)請(qǐng)根據(jù)下圖填寫如表:

平均數(shù)

方差

中位數(shù)

眾數(shù)

極差

75

75

33.3

15


(2)請(qǐng)你分別從以下兩個(gè)不同的方面對(duì)甲、乙兩名同學(xué)6次考試成績進(jìn)行分析:
①從平均數(shù)和方差相結(jié)合看;
②從折線圖上兩名同學(xué)分?jǐn)?shù)的走勢(shì)上看,你認(rèn)為反映出什么問題?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們約定:當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:

①當(dāng)x>2時(shí),M=y2

②當(dāng)x<0時(shí),x值越大,M值越大;

③使得M大于4的x值不存在;

④若M=2,則x=1.

其中正確的有( )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)軸上與表示3的點(diǎn)相距4個(gè)單位長度的點(diǎn)表示的數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某實(shí)驗(yàn)中學(xué)為了進(jìn)一步豐富學(xué)生的課余生活,擬調(diào)整興趣活動(dòng)小組,為此進(jìn)行了一次調(diào)查,結(jié)果如下,請(qǐng)看表回答:

選項(xiàng)

美術(shù)

電腦

音樂

體育

占調(diào)查人數(shù)的百分率

15%

30%

30%

(1)喜歡體育項(xiàng)目的人數(shù)占總體的百分比是多少?

(2)表示電腦部分的圓心角是多少度?

(3)根據(jù)所給數(shù)據(jù),畫出表示調(diào)查結(jié)果的扇形統(tǒng)計(jì)圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用了隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:

(1)接受問卷調(diào)查的學(xué)生共有 人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為 .

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.

(3)若從對(duì)校園安全知識(shí)達(dá)到“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競賽,請(qǐng)用畫樹狀圖或列表的方法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A、B兩點(diǎn),B點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C0,﹣3

1)求拋物線的解析式;

2)點(diǎn)P在拋物線位于第四象限的部分上運(yùn)動(dòng),當(dāng)四邊形ABPC的面積最大時(shí),求點(diǎn)P的坐標(biāo)和四邊形ABPC的最大面積.

3)直線l經(jīng)過A、C兩點(diǎn),點(diǎn)Q在拋物線位于y軸左側(cè)的部分上運(yùn)動(dòng),直線m經(jīng)過點(diǎn)B和點(diǎn)Q,是否存在直線m,使得直線l、mx軸圍成的三角形和直線l、my軸圍成的三角形相似?若存在,求出直線m的解析式,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案