【題目】已知拋物線的頂點,且經(jīng)過點,與軸分別交于兩點.
(1)求直線和該拋物線的解析式;
(2)如圖1,點是拋物線上的一個動點,且在直線的上方,過點作軸的平行線與直線交于點,求的最大值;
(3)如圖2,軸交軸于點,點是拋物線上、之間的一個動點,直線、與分別交于、,當(dāng)點運動時,求的值.
【答案】(1),;(2);(3)4
【解析】
(1)設(shè)直線的解析式為,根據(jù)B點坐標(biāo)得直線的解析式,由拋物線的頂點坐標(biāo)可設(shè)拋物線對應(yīng)的函數(shù)表達(dá)式為代入點B的坐標(biāo)可求出a值,進(jìn)而可得出拋物線對應(yīng)的函數(shù)表達(dá)式;
(2)設(shè)點設(shè),,將直線的解析式與拋物線對應(yīng)的函數(shù)聯(lián)立可得t的范圍,進(jìn)而可用t與s的關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問題;
(3)設(shè),則,,,又因為,化簡上式即可求得.
解:(1)設(shè)直線的解析式為,
∵,∴,∴,
∴直線的解析式為,
∵拋物線的頂點,且經(jīng)過點,
∴設(shè)拋物線的解析式為,∴,∴,
∴拋物線的解析式為;
(2)設(shè),,
則的橫坐標(biāo)為,縱坐標(biāo)為,
∵∴,
∵點是直線的上方拋物線的點∴
∵軸,∴
∴
∵∴當(dāng)時,的最大值為;
(3)
設(shè),則,,,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個自然數(shù)的立方,可以分裂成若干個連續(xù)奇數(shù)的和,例如:,和分別可以按如圖所示的方式“分裂”成2個,3個和4個連續(xù)奇數(shù)的和,即,,…,若也按照此規(guī)律來進(jìn)行“分裂”,則“分裂”出的奇數(shù)中,最大的奇數(shù)是( )
A.39B.41C.43D.45
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC是等邊三角形,如圖①,點D、E分別在射線BA、BC上,且AD=CE,求證:△BDE是等邊三角形;
(2)如圖②,點D在BA邊上,點E在射線BC上,AD=CE,連接DE交AC于點F,請問DF與EF的數(shù)量關(guān)系是什么?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】曲阜限制“三小車輛”出行后,為方便市民出行,準(zhǔn)備為、、、四個村建一個公交車站.
(1)請問:公交站建在何處才能使它到4個村的距離之和最小,請在圖一中找出點;
(2)請問:公交站建在何處才能使它到道路、、的距離相等,請在圖二中找出點并加以說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在線段AB上取一點C(非中點),分別以AC、BC為邊在AB的同側(cè)作等邊△ACD和等邊△BCE,連接AE交CD于點F,連接BD交CE于點G,AE和BD交于點H.
(1)求證:△ACE≌△DCB
(2)求∠BHE的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是___________;
(2)問題解決: 如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,以C為頂點作∠ECF,使得角的兩邊分別交AB,AD于E、F兩點,連接EF,且EF=BE+DF,試探索∠ECF與∠A之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于點C,交弦AB于點D.已知AB=24cm,CD=8cm.
(1)求作此殘片所在的圓(不寫作法,保留作圖痕跡)
(2)求殘片所在圓的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形的邊長為1,點是邊上的一個動點(與,不重合),以為頂點在所在直線的上方作
(1)當(dāng)經(jīng)過點時,
①請直接填空:________(可能,不可能)過點:(圖1僅供分析)
②如圖2,在上截取,過點作垂直于直線,垂足為點,作于,求證:四邊形為正方形;
③如圖2,將②中的已知與結(jié)論互換,即在上取點(點在正方形外部),過點作垂直于直線,垂足為點,作于,若四邊形為正方形,那么與是否相等?請說明理由;
(2)當(dāng)點在射線上且不過點時,設(shè)交邊于,且.在上存在點,過點作垂直于直線,垂足為點,使得,連接,則當(dāng)為何值時,四邊形的面積最大?最大面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在半徑為10 cm圓中,兩條平行弦分別長為12 cm,16cm,則這兩條平行弦之間的距離為( )
A. 28 cm或4 cm B. 14cm或2cm C. 13 cm或4 cm D. 5 cm或13cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com