【題目】已知線段MN=8,C是線段MN上一動點,在MN的同側分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線段相交于點H,求證ME=DN,并求∠DHM的度數(shù);

(2)如圖②,過點D、E分別作線段MN的垂線,垂足分別為F、G,問:在點C運動過程中,DF+EG的長度是否為定值,如果是,請求出這個定值,如果不是請說明理由;

(3)當點C由點M移到點N時,點H移到的路徑長度為(直接寫出結果)

【答案】
(1)

證明:∵△CMD與△CNE是等邊三角形,

∴CM=CD,EC=NC,∠DCM=∠ECN=60°,

∴∠DCN=∠MCE=120°,

在△MCE與△DCN中, ,

∴△MCE≌△DCN,

∴ME=DN,∠CME=∠CDN,

∵∠1=∠2,

∴180°﹣∠CME﹣∠1=180°﹣∠CDN﹣∠2,

∴∠DHM=∠DCM=60°;


(2)

解:DF+EG為定值,

理由:設MF=FC=x,則CG=NG=4﹣x,

∴DF= x,EG= (4﹣x),

∴DF+GE= x+ (4﹣x)=4


(3)
【解析】(3)解:如圖③,當點C由點M移到點N時,點H移到的路徑即為
∵∠MHD=60°,
∴∠MHN=120°,
∴∠MPN=60°,
∴∠MON=120°,
∵MN=8,
∴OM=ON= ,
∴點H移到的路徑長度= = ,
所以答案是:

【考點精析】根據(jù)題目的已知條件,利用三角形的內角和外角和等邊三角形的性質的相關知識可以得到問題的答案,需要掌握三角形的三個內角中,只可能有一個內角是直角或鈍角;直角三角形的兩個銳角互余;三角形的一個外角等于和它不相鄰的兩個內角的和;三角形的一個外角大于任何一個和它不相鄰的內角;等邊三角形的三個角都相等并且每個角都是60°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解下列方程:

(1)2(100.5y)=﹣(1.5y+2)

(2)(x5)3(x5)

(3)1

(4)x(x9)[x+(x9)]

(5) -=0.5x+2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= +3與坐標軸交于A、B兩點,⊙O的半徑為2,點P是⊙O上動點,△ABP面積的最大值為cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 AB=AC,CD⊥ABD,BE⊥ACE,BECD相交于點O

1)求證AD=AE

2)連接OA,BC,試判斷直線OA,BC的關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線SN⊥直線WE,垂足是點O,射線ON表示正北方向,射線OE表示正東方向.已知射線OB的方向是南偏東m°,射線OC的方向是北偏東n°,且m°的角與n°的角互余.

(1)寫出圖中與∠BOE互余的角:   

(2)若射線OA是∠BON的角平分線,探索∠BOS與∠AOC的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,A、B、C分別為數(shù)軸上的三點,A點對應的數(shù)為60,B點在A點的左側,并且與A點的距離為30,C點在B點左側,C點到A點距離是B點到A點距離的4倍.

(1)求出數(shù)軸上B點對應的數(shù)及AC的距離.

(2)點P從A點出發(fā),以3單位/秒的速度向終點C運動,運動時間為t秒.

①當P點在AB之間運動時,則BP=   .(用含t的代數(shù)式表示)

②P點自A點向C點運動過程中,何時P,A,B三點中其中一個點是另外兩個點的中點?求出相應的時間t.

③當P點運動到B點時,另一點Q以5單位/秒的速度從A點出發(fā),也向C點運動,點Q到達C點后立即原速返回到A點,那么Q點在往返過程中與P點相遇幾次?直.接.寫.出.相遇時P點在數(shù)軸上對應的數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解填空,并在括號內填注理由.

如圖,已知ABCD,M,N分別交ABCD于點E,F,∠1=∠2,求證:EPFQ

證明:∵ABCD   

∴∠MEB=∠MFD   ).

又∵∠1=∠2   

MEB﹣∠1=∠MFD﹣∠2   

即:∠MEP=∠   

EP   .(   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ADBC,ABCD,E在線段BC延長線上,AE平分∠BAD.連接DE,若∠ADE3CDE,∠AED60°.

1)求證:∠ABC=∠ADC;

2)求∠CDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】課堂上學習了勾股定理后,知道勾三、股四、弦五.王老師給出一組數(shù)讓學生觀察:3、4、5;5、12、13;7、24、25;9、40、41;…,學生發(fā)現(xiàn)這些勾股 數(shù)的勾都是奇數(shù),且從 3 起就沒有間斷過,于是王老師提出以下問題讓學生解決.

(1)請你根據(jù)上述的規(guī)律寫出下一組勾股數(shù):11、________、________;

(2)若第一個數(shù)用字母a(a為奇數(shù),且a≥3)表示,那么后兩個數(shù)用含a的代數(shù)式分別怎么表示?小明發(fā)現(xiàn)每組第二個數(shù)有這樣的規(guī)律4=,12=,24=……,于是他很快表示了第二數(shù)為 ,則用含a的代數(shù)式表示第三個數(shù)為________;

(3)用所學知識證明你的結論.

查看答案和解析>>

同步練習冊答案