【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的兩個根,則實數(shù)x1 , x2 , a,b的大小關系為(
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2

【答案】C
【解析】解:用作圖法比較簡單,首先作出(x﹣a)(x﹣b)=0圖象,任意畫一個(開口向上的,與x軸有兩個交點),再向下平移一個單位,就是(x﹣a)(x﹣b)=1,這時與x軸的交點就是x1 , x2 , 畫在同一坐標系下,很容易發(fā)現(xiàn): 答案是:x1<a<b<x2
故選:C.

【考點精析】關于本題考查的拋物線與坐標軸的交點,需要了解一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠AOB,OA=OB,點E在OB 上,四邊形AEBF是矩形.
(1)請你只用無刻度的直尺在圖中畫出∠AOB的平分線(保留畫圖痕跡);
(2)若∠AOB=45°,OA=OB=2 ,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某水上樂園有一個滑梯AB,高度AC為6米,傾斜角為60°,暑期將至,為改善滑梯AB的安全性能,把傾斜角由60°減至30°

(1)求調(diào)整后的滑梯AD的長度;
(2)調(diào)整后的滑梯AD比原滑梯AB增加多少米?(精確到0.1米)
(參考數(shù)據(jù): ≈1.41, , ≈2.45)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線;
(2)若OB=5,OP= ,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若x1 , x2(x1<x2)是方程(x﹣a)(x﹣b)=1(a<b)的兩個根,則實數(shù)x1 , x2 , a,b的大小關系為(
A.x1<x2<a<b
B.x1<a<x2<b
C.x1<a<b<x2
D.a<x1<b<x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司生產(chǎn)的某種商品每件成本為20元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時間t(天)的關系如下表:

時間t(天)

1

3

5

10

36

日銷售量m(件)

94

90

86

76

24

未來40天內(nèi),前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關系式為y1= t+25(1≤t≤20且t為整數(shù)),后20天每天的價格y2(元/件)與時間t(天)的函數(shù)關系式為y2=﹣ t+40(21≤t≤40且t為整數(shù)).
下面我們就來研究銷售這種商品的有關問題:
(1)認真分析上表中的數(shù)據(jù),用所學過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)的m(件)與t(天)之間的表達式;
(2)請預測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解不等式組: ,并寫出其整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點P由B出發(fā)沿BA向點A勻速運動,同時點Q由A出發(fā)沿AC向點C勻速運動,它們的速度均為2cm/s.連接PQ,設運動的時間為t(單位:s)(0≤t≤4).

(1)當t為何值時,PQ∥BC.
(2)設△AQP的面積為S(單位:cm2),當t為何值時,S取得最大值,并求出最大值.
(3)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案