【題目】正方形EFGH的頂點(diǎn)在邊長(zhǎng)為3的正方形ABCD邊上,若AE=x,正方形EFGH的面積為y,則yx的函數(shù)關(guān)系式為______

【答案】y=2x2﹣6x+9

【解析】

AAS證明DHE≌△AEF,得出DE=AF=x,DH=AE=3-x,再根據(jù)勾股定理,求出EH2,即可得到yx之間的函數(shù)關(guān)系式.

如圖所示:

∵四邊形ABCD是邊長(zhǎng)為3的正方形,

∴∠A=D=90°,AD=3.

∴∠1+2=90°

∵四邊形EFGH為正方形,

∴∠HEF=90°,EH=EF.

∴∠1+3=90°,

∴∠2=3,

AHEBEF

,

∴△DHE≌△AEF(AAS),

DE=AF=x,DH=AE=3-x,

RtAHE中,由勾股定理得:

EH2=DE2+DH2=x2+(3-x)2=2x2-6x+9;

y=2x2-6x+9(0<x<3),

故答案為:y=2x2-6x+9.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c a≠0)的圖象如圖所示,則①abc>0,②b2-4ac>0,③2a+b>0,④a+b+c<0,這四個(gè)式子中正確的個(gè)數(shù)有(

A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx經(jīng)過OAB的三個(gè)頂點(diǎn),其中點(diǎn)A(1,),點(diǎn)B(3,﹣),O為坐標(biāo)原點(diǎn).

(1)求這條拋物線所對(duì)應(yīng)的函數(shù)表達(dá)式;

(2)若P(4,m),Qtn)為該拋物線上的兩點(diǎn),且nm,求t的取值范圍;

(3)若C為線段AB上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)A,點(diǎn)B到直線OC的距離之和最大時(shí),求∠BOC的大小及點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,lA、lB分別表示A步行與B騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.

(1)B出發(fā)時(shí)與A相距_____千米.

(2)走了一段路后,自行車發(fā)生故障進(jìn)行修理,所用的時(shí)間是____小時(shí).

(3)B出發(fā)后_____小時(shí)與A相遇.

(4)求出A行走的路程S與時(shí)間t的函數(shù)關(guān)系式.(寫出計(jì)算過程)

(5)請(qǐng)通過計(jì)算說明:若B的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),何時(shí)與A相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+mx+n與直線y=﹣x+3交于A,B兩點(diǎn),交x軸與D,C兩點(diǎn),連接ACBC,已知A(0,3),C(3,0).

(1)求拋物線的關(guān)系式和tanBAC的值;

(2)P為拋物線上一動(dòng)點(diǎn),連接PA,過點(diǎn)PPQOAy軸于點(diǎn)Q,問:是否存在點(diǎn)P使得以A,PQ為頂點(diǎn)的三角形與ACB相似?若存在,請(qǐng)求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

(3)在AB上找一點(diǎn)M,使得OM+DM的值最小,直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)甲、乙兩種商品,已知每件甲種商品的價(jià)格比每件乙種商品的價(jià)格貴10元,用350元購買甲種商品的件數(shù)恰好與用300元購買乙種商品的件數(shù)相同.

1)求甲、乙兩種商品每件的價(jià)格各是多少元?

2)計(jì)劃購買這兩種商品共50件,且投入的經(jīng)費(fèi)不超過3200元,那么最多購買多少件甲種商品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣2,4),B(﹣4,1),C(0,1).

(1)畫出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);

(2)畫出以C1為旋轉(zhuǎn)中心,將△A1B1C1逆時(shí)針旋轉(zhuǎn)90°后的△A2B2C2;

(3)尺規(guī)作圖:連接A1A2,在C1A2邊上求作一點(diǎn)P,使得點(diǎn)PA1A2的距離等于PC1的長(zhǎng)(保留作圖痕跡,不寫作法);

(4)請(qǐng)直接寫出∠C1A1P的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,晚上小亮在廣場(chǎng)上乘涼,圖中線段AB表示站在廣場(chǎng)上的小亮,線段PO表示直立在廣場(chǎng)上的燈桿,點(diǎn)P表示照明燈.

請(qǐng)你再圖中畫出小亮在照明燈P照射下的影子BC;

如果燈桿高PO=12m,小亮的身高AB=1.6m,小亮與燈桿的距離BO=13m請(qǐng)求出小亮影子的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分8分)

為營(yíng)造書香家庭,周末小亮和姐姐一起從家出發(fā)去圖書館借書,走了6分鐘忘帶借書證,小亮立即騎路邊共享單車返回家中取借書證,姐姐以原來的速度繼續(xù)向前行走,小亮取到借書證后騎單車原路原速前往圖書館,小亮追上姐姐后用單車帶著姐姐一起前往圖書館.已知單車的速度是步行速度的3倍,如圖是小亮和姐姐距家的路程y(米)與出發(fā)的時(shí)間x(分鐘)的函數(shù)圖象,根據(jù)圖象解答下列問題:

小亮在家停留了 分鐘.

求小亮騎單車從家出發(fā)去圖書館時(shí)距家的路程y(米)與出發(fā)時(shí)間x(分鐘)之間的函數(shù)關(guān)系式.

若小亮和姐姐到圖書館的實(shí)際時(shí)間為m分鐘,原計(jì)劃步行到達(dá)圖書館的時(shí)間為n分鐘,則n-m= 分鐘.

查看答案和解析>>

同步練習(xí)冊(cè)答案