12.如圖,BC⊥CA于點(diǎn)C,DC⊥CE點(diǎn)C,∠ACE=∠DCB,BC=CA,DC=CE,直線BD與AE交于點(diǎn)F,交AC于點(diǎn)G,連接CF.
(1)求證:△ACE≌△BCD;(2)求證:BF⊥AE;
(3)請(qǐng)判斷:∠CFE=∠CAB,并說(shuō)明理由.

分析 (1)根據(jù)SAS即可證明.
(2)由△BCD≌△ACE,推出∠CBD=∠CAE,由∠BGC=∠AGE,即可推出∠AFB=∠ACB=90°.
(3)結(jié)論:∠CFE=∠CAB,過(guò)C作CH⊥AE于H,CI⊥BF于I,由△BCD≌△ACE,推出AE=BD,S△ACE=S△BCD,推出CH=CI,推出CF平分∠BFH,
推出,∠CFE=45°,由△ABC是等腰直角三角形,推出∠CAB=45°,即可證明.

解答 證明:(1)在△BCD與△ACE中,
$\left\{\begin{array}{l}{BC=AC}\\{∠BCD=∠ACE}\\{DC=CE}\end{array}\right.$,
∴△BCD≌△ACE;

(2)∵△BCD≌△ACE,
∴∠CBD=∠CAE,
∵∠BGC=∠AGE,
∴∠AFB=∠ACB=90°,
∴BF⊥AE;            

(3)結(jié)論:∠CFE=∠CAB,
理由:過(guò)C作CH⊥AE于H,CI⊥BF于I,

∵△BCD≌△ACE,
∴AE=BD,S△ACE=S△BCD,
∴CH=CI,
∴CF平分∠BFH,
∵BF⊥AE,
∴∠BFH=90°,∠CFE=45°,
∵BC⊥CA,BC=CA,
∴△ABC是等腰直角三角形,
∴∠CAB=45°,
∴∠CFE=∠CAB.
故答案為=.

點(diǎn)評(píng) 本題考查全等三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)添加常用輔助線,屬于中考常考題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列計(jì)算中,正確的個(gè)數(shù)有( 。
①5a+3a=8;②2xy-2yx=0;③-ab-ab=0;④3mn-3m=m;⑤2x+3y=5xy.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知二次函數(shù)y=x2+4x+3.
(1)用配方法將二次函數(shù)的表達(dá)式化為y=a (x-h)2+k 的形式;
(2)在平面直角坐標(biāo)系xOy中,畫(huà)出這個(gè)二次函數(shù)的圖象;
(3)根據(jù)(2)中的圖象,寫(xiě)出一條該二次函數(shù)的性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.如圖,6個(gè)形狀、大小完全相同的菱形組成網(wǎng)格,菱形的頂點(diǎn)稱(chēng)為格點(diǎn),已知菱形的一個(gè)角(∠O)為60°,A,B,C都在格點(diǎn)上,則tan∠ABC的值是( 。
A.1B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

7.計(jì)算
①-32+1-(-2)3
②(-5)2÷[2$\frac{1}{2}$-(-1+2$\frac{1}{4}$)]×0.4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某農(nóng)科所在相同條件下做某種作物種子發(fā)芽率的試驗(yàn),結(jié)果如表所示:
種子個(gè)數(shù)n10001500250040008000150002000030000
發(fā)芽種子個(gè)數(shù)m8991365224536447272136801816027300
發(fā)芽種子頻率$\frac{m}{n}$0.8990.9100.8980.9110.9090.9120.9080.910
則該作物種子發(fā)芽的概率約為0.910.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在平面直角坐標(biāo)系xOy中,直線y=-$\frac{1}{4}$x+n經(jīng)過(guò)點(diǎn)A(-4,2),分別與x,y軸交于點(diǎn)B,C,拋物線y=x2-2mx+m2-n的頂點(diǎn)為D.?
(1)求點(diǎn)B,C的坐標(biāo);
(2)①直接寫(xiě)出拋物線頂點(diǎn)D的坐標(biāo)(用含m的式子表示);
②若拋物線y=x2-2mx+m2-n與線段BC有公共點(diǎn),求m的取值范圍.?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.隨著國(guó)家“惠民政策”的陸續(xù)出臺(tái),為了切實(shí)讓老百姓得到實(shí)惠,國(guó)家衛(wèi)計(jì)委通過(guò)嚴(yán)打藥品銷(xiāo)售環(huán)節(jié)中的不正當(dāng)行為,某種藥品原價(jià)200元/瓶,經(jīng)過(guò)連續(xù)兩次降價(jià)后,現(xiàn)在僅賣(mài)98元/瓶,現(xiàn)假定兩次降價(jià)的百分率相同,求:
(1)該種藥品平均每次降價(jià)的百分率.
(2)若按(1)中的百分率再降一次,則每瓶的售價(jià)將為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.閱讀材料,并回答問(wèn)題
如圖,有一根木棒MN放置在數(shù)軸上,它的兩端M、N分別落在點(diǎn)A、B.將木棒在數(shù)軸上水平移動(dòng),當(dāng)點(diǎn)M移動(dòng)到點(diǎn)B時(shí),點(diǎn)N所對(duì)應(yīng)的數(shù)為20,當(dāng)點(diǎn)N移動(dòng)到點(diǎn)A時(shí),點(diǎn)M所對(duì)應(yīng)的數(shù)為5.(單位:cm)

由此可得,木棒長(zhǎng)為5cm.
借助上述方法解決問(wèn)題:
一天,美羊羊去問(wèn)村長(zhǎng)爺爺?shù)哪挲g,村長(zhǎng)爺爺說(shuō):“我若是你現(xiàn)在這么大,你還要40年才出生呢,你若是我現(xiàn)在這么大,我已經(jīng)是老壽星了,116歲了,哈哈!”美羊羊納悶,村長(zhǎng)爺爺?shù)降资嵌嗌贇q?
請(qǐng)你畫(huà)出示意圖,求出村長(zhǎng)爺爺和美羊羊現(xiàn)在的年齡,并說(shuō)明解題思路.

查看答案和解析>>

同步練習(xí)冊(cè)答案